留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性无烟煤材料的制备及其对磷的吸附回收性能

武越 赵婷 金彦任 薛燕 张凌旋 李达 乔晋如 黄杨

武越,赵婷,金彦任,等.改性无烟煤材料的制备及其对磷的吸附回收性能[J].环境工程技术学报,2022,12(5):1653-1659 doi: 10.12153/j.issn.1674-991X.20210349
引用本文: 武越,赵婷,金彦任,等.改性无烟煤材料的制备及其对磷的吸附回收性能[J].环境工程技术学报,2022,12(5):1653-1659 doi: 10.12153/j.issn.1674-991X.20210349
WU Y,ZHAO T,JIN Y R,et al.Preparation of modified anthracites and research on their adsorption and recovery performance on phosphorus[J].Journal of Environmental Engineering Technology,2022,12(5):1653-1659 doi: 10.12153/j.issn.1674-991X.20210349
Citation: WU Y,ZHAO T,JIN Y R,et al.Preparation of modified anthracites and research on their adsorption and recovery performance on phosphorus[J].Journal of Environmental Engineering Technology,2022,12(5):1653-1659 doi: 10.12153/j.issn.1674-991X.20210349

改性无烟煤材料的制备及其对磷的吸附回收性能

doi: 10.12153/j.issn.1674-991X.20210349
基金项目: 国家自然科学基金青年基金项目(51708050)
详细信息
    作者简介:

    武越(1992—),男,工程师,硕士,主要从事吸附材料的开发与改性研究,1508235620@qq.com

    通讯作者:

    黄杨(1990—),女,副教授,博士,主要从事吸附机理研究,huangyang@cuit.edu.cn

  • 中图分类号: X703

Preparation of modified anthracites and research on their adsorption and recovery performance on phosphorus

  • 摘要:

    为了实现污水中磷的回收与资源化利用,提出采用Fe-Al-Zr改性的无烟煤材料吸附-回收磷的方法。该吸附剂对磷的总吸附量为13.022 mg/g,吸附机理主要包括静电作用、配体交换和表面沉积等;微孔提供主要的吸附位点,决定了磷的吸附容量。该吸附剂可循环使用4个周期,直至磷的吸附率低于50%。在碱性条件下,通过投加一定量的CaCl2〔Ca∶P(摩尔比)=2∶1〕,磷能够以羟基磷灰石(HAP)的形式脱附和被回收。

     

  • 图  1  原始无烟煤和Fe-Al-Zr改性无烟煤的SEM图像以及Fe-Al-Zr改性无烟煤的EDS谱图

    Figure  1.  SEM image of original anthracite and Fe-Al-Zr modified anthracite, and EDS mapping of Fe-Al-Zr modified anthracite

    图  2  原始无烟煤以及Fe-Al-Zr改性无烟煤吸附磷前后的XRD

    Figure  2.  XRD curve of origin anthracites and Fe-Al-Zr modified anthracites before and after adsorption

    图  3  原始无烟煤和Fe-Al-Zr改性无烟煤的投加量对磷去除率的影响

    Figure  3.  Effect of original and Fe-Al-Zr modified anthracites dosage on adsorption rate of phosphorus

    图  4  Fe-Al-Zr改性无烟煤对磷的吸附动力学曲线拟合

    Figure  4.  Adsorption dynamics of phosphorus onto Fe-Al-Zr modified anthracites

    图  5  Fe-Al-Zr改性无烟煤在不同吸附时间的孔径分布曲线

    Figure  5.  Pore size distribution of Fe-Al-Zr modified anthracites at different time in the adsorption process

    图  6  CaCl2的投加量和溶液pH对磷回收率的影响

    Figure  6.  Effect of CaCl2 dosage and pH on the recovery efficiency of phosphorous

    表  1  无烟煤改性过程中药剂投加量的正交设计

    Table  1.   Orthogonal design of the dosage of reagent in the anthracite modification process

    药剂投加量(mmol/g,以无烟煤计)磷的去
    除率/%
    FeSO4·7H2OFeCl3·6H2OCl2OZr·8H2OAl(NO3)3·9H2O
    122271.35
    124493.37
    244468.79
    244263.87
    下载: 导出CSV

    表  2  Fe-Al-Zr改性无烟煤吸附磷的动力学与等温吸附模型拟合参数

    Table  2.   Fitting parameters of kinetic models and isotherm parameters for the adsorption of phosphorus onto Fe-Al-Zr modified anthracites

    模型模型参数拟合值
    伪一级动力学模型
    ${q_t}{\text{ = } }{q_{\rm{e} } }(1 - { {\rm{e} }^{ - {K_1}t} })$
    K1/(min−1)0.008 6
    qe/(mg/g)3.256
    R20.975 1
    伪二级动力学模型
    $\dfrac{t}{ { {q_t} } } = \dfrac{1}{ { {K_2}q_{\rm{e}}^2} } + \dfrac{t}{ { {q_{\rm{e}}} } }$
    K2/〔g/(mg·min)〕0.006 0
    qe/(mg/g)5.656
    R20.998 8
    Langmuir模型
    ${q_{\rm{e}}} = \dfrac{ { {q_{\rm{m}}}{K_{\rm{L}}}{C_{\rm{e}}} } }{ {1 + {K_{\rm{L}}}{C_{\rm{e}}} } }$
    qm/(mg/g)12.853 0
    KL (L/mg)2.350
    R20.998 3
    Freundlich模型
    ${q_{\rm{e}}} = {K_{\rm{F}}}{C_{\rm{e}}}^{1/n}$
    KF/〔(mg/g)/(mg/L)1/n6.373 0
    1/n2.378
    R20.918 2
    下载: 导出CSV

    表  3  Fe-Al-Zr改性无烟煤吸附磷的颗粒内扩散模型拟合参数

    Table  3.   Fitting parameters of intraparticle diffusion model for the adsorption of phosphorus onto Fe-Al-Zr modified anthracites

    模型参数第一阶段第二阶段
    $ {q}_{t}={K}_{i}{t}^{1/2}+C $Ki/〔mg/(g·min−1/2)〕0.1880.009
    C/(mg/g)2.0125.138
    R20.978 70.648 1
    下载: 导出CSV

    表  4  不同吸附剂除磷性能的比较

    Table  4.   Comparison of phosphorous adsorption of different adsorbent

    吸附剂吸附量/(mg/g)数据来源
    硅改性花生壳生物炭2.79文献[23]
    污泥生物炭9.615文献[24]
    磁性水滑石/生物炭复合材料9.50文献[25]
    微孔碳@粉煤灰复合材料8.375文献[26]
    Fe-Al-Zr改性无烟煤13.022本研究
    下载: 导出CSV

    表  5  Fe-Al-Zr改性无烟煤在4个循环周期中对磷的吸附量和去除率

    Table  5.   Adsorption amount and removal efficiency of Fe-Al-Zr modified anthracites in the four operation cycles

    项目 第1次循环 第2次循环 第3次循环 第4次循环
    第1次吸附 第2次吸附 第3次吸附 第1次吸附 第2次吸附 第1次吸附 第2次吸附 第1次吸附
    吸附量/(mg/g) 6.289 4.181 2.552 4.915 2.139 3.645 1.309 2.778
    去除率/% 96.42 76.53 44.12 76.53 35.28 60.93 22.48 48.03
    下载: 导出CSV
  • [1] 桑倩倩, 王芳君, 赵元添, 等.铁硫改性生物炭去除水中的磷[J]. 环境科学,2021,42(5):2313-2323.

    SANG Q Q, WANG F J, ZHAO Y T, et al. Application of iron and sulfate-modified biochar in phosphorus removal from water[J]. Environmental Science,2021,42(5):2313-2323.
    [2] 崔荣国, 张艳飞, 郭娟, 等.资源全球配置下的中国磷矿发展策略[J]. 中国工程科学,2019,21(1):128-132.

    CUI R G, ZHANG Y F, GUO J, et al. Development strategy of phosphate rock in China under global allocation of resources[J]. Engineering Science,2019,21(1):128-132.
    [3] SHEPHERD J G, SOHI S P, HEAL K V. Optimising the recovery and re-use of phosphorus from wastewater effluent for sustainable fertiliser development[J]. Water Research,2016,94:155-165. doi: 10.1016/j.watres.2016.02.038
    [4] LIU T, CHEN X, WANG X, et al. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3[J]. Chemical Engineering Journal,2018,335:443-449. doi: 10.1016/j.cej.2017.10.117
    [5] 赵鹏, 李红艳, 崔建国, 等.载铝活性炭纤维的制备及其脱氮除磷性能[J]. 工业水处理,2020,40(11):79-83.

    ZHAO P, LI H Y, CUI J G, et al. Preparation of aluminum-loaded activated carbon fiber and its nitrogen and phosphorus removal performance[J]. Industrial Water Treatment,2020,40(11):79-83.
    [6] OGINNI O, YAKABOYLU G A, SINGH K, et al. Phosphorus adsorption behaviors of MgO modified biochars derived from waste woody biomass resources[J]. Journal of Environmental Chemical Engineering,2020,8(2):103723. doi: 10.1016/j.jece.2020.103723
    [7] 王春丽, 吴俊奇, 宋永会, 等.活化赤泥颗粒吸附除磷的效能与机制研究[J]. 环境工程技术学报,2015,5(2):143-148. doi: 10.3969/j.issn.1674-991X.2015.02.021

    WANG C L, WU J Q, SONG Y H, et al. Research on performance and mechanisms of activated red mud particles on adsorbing and removing phosphorus[J]. Journal of Environmental Engineering Technology,2015,5(2):143-148. doi: 10.3969/j.issn.1674-991X.2015.02.021
    [8] 何一帆, 聂小保, 余志, 等.低磷污水的HAP诱导结晶磷回收[J]. 环境科学学报,2021,41(2):566-573.

    HE Y F, NIE X B, YU Z, et al. Phosphorus recovery from wastewater with low phosphorus concentration by HAP induced crystallization[J]. Acta Scientiae Circumstantiae,2021,41(2):566-573.
    [9] 胡怡, 宋永会, 钱锋, 等.赤泥诱导磷酸钙结晶法回收废水中的磷[J]. 环境工程技术学报,2014,4(1):60-66. doi: 10.3969/j.issn.1674-991X.2014.01.011

    HU Y, SONG Y H, QIAN F, et al. Phosphorus recovery from wastewater by red mud-seeded crystallization of calcium phosphate[J]. Journal of Environmental Engineering Technology,2014,4(1):60-66. doi: 10.3969/j.issn.1674-991X.2014.01.011
    [10] LEI Y, SAAKES M, van der WEIJDEN R D, et al. Electrochemically mediated calcium phosphate precipitation from phosphonates: implications on phosphorus recovery from non-orthophosphate[J]. Water Research,2020,169:115206. doi: 10.1016/j.watres.2019.115206
    [11] HE J, ZHOU Q H, GUO J S, et al. Incredulity on assumptions for the simplified Bohart-Adams model: 17a-ethinylestradiol separation in lab-scale anthracite columns[J]. Journal of Hazardous Materials,2020,384:121501. doi: 10.1016/j.jhazmat.2019.121501
    [12] PAI C W, LEONG D, CHEN C Y, et al. Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes[J]. Chemosphere,2020,256:127002. doi: 10.1016/j.chemosphere.2020.127002
    [13] MOHAMED E A, SELIM A Q, AHMED S A, et al. H2O2-activated anthracite impregnated with chitosan as a novel composite for Cr(Ⅵ) and methyl orange adsorption in single-compound and binary systems: modeling and mechanism interpretation[J]. Chemical Engineering Journal,2020,380:122445. doi: 10.1016/j.cej.2019.122445
    [14] 常会庆, 王浩, 徐晓峰.无烟煤活性炭对酸碱性不同染料废水的吸附研究[J]. 水土保持学报,2014,28(2):276-280.

    CHANG H Q, WANG H, XU X F. Adsorption studies of acid and base dyes wastewater on anthracite activated carbon[J]. Journal of Soil and Water Conservation,2014,28(2):276-280.
    [15] 简志强, 周高婷, 龚斌, 等.微米零价铁去除磷酸盐效果与机理研究[J]. 环境工程技术学报,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027

    JIAN Z Q, ZHOU G T, GONG B, et al. Study on the efficacy of micron zero-valent iron on phosphate removal and its mechanism[J]. Journal of Environmental Engineering Technology,2021,11(5):927-934. doi: 10.12153/j.issn.1674-991X.20210027
    [16] FENG J W, JIANG L, YUAN B X, et al. Enhanced removal of aqueous phosphorus by Zr–Fe-, Mn–Fe-, and Mn–Zr–Fe-modified natural zeolites: comparison studies and adsorption mechanism[J]. Environmental Engineering Science,2020,37(8):572-584. doi: 10.1089/ees.2019.0490
    [17] LIN X C, XIE Y L, LU H J, et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery[J]. Chemical Engineering Journal,2021,413:127530. doi: 10.1016/j.cej.2020.127530
    [18] HE J, GUO J S, ZHOU Q H, et al. Adsorption characteristics of nitrite on natural filter medium: Kinetic, equilibrium, and site energy distribution studies[J]. Ecotoxicology and Environmental Safety,2019,169:435-441. doi: 10.1016/j.ecoenv.2018.11.039
    [19] WANG M, YU X L, YANG C L, et al. Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite[J]. Chemical Engineering Journal,2017,322:246-253. doi: 10.1016/j.cej.2017.03.155
    [20] MACÍAS-GARCÍA A, GÓMEZ CORZO M, ALFARO DOMÍNGUEZ M, et al. Study of the adsorption and electroadsorption process of Cu(Ⅱ) ions within thermally and chemically modified activated carbon[J]. Journal of Hazardous Materials,2017,328:46-55. doi: 10.1016/j.jhazmat.2016.11.036
    [21] 刘赫尊, 陈亮, 张海丰, 等.改性海绵铁深度除磷及其再生磷回收方法[J]. 环境科学学报,2020,40(1):147-154.

    LIU H Z, CHEN L, ZHANG H F, et al. Phosphorus removal and recovery based on modified sponge iron[J]. Acta Scientiae Circumstantiae,2020,40(1):147-154.
    [22] LI Y G, LI Q Q, WU C X, et al. The inappropriate application of the regression Langmuir Qm for adsorption capacity comparison[J]. Science of the Total Environment,2020,699:134222. doi: 10.1016/j.scitotenv.2019.134222
    [23] 赵敏, 张小平, 王梁嵘. 2021. 硅改性花生壳生物炭对水中磷的吸附特性[J/OL]. 环境科学, 2021. doi: 10.13227/j.hjkx.202103012.

    ZHAO M, ZHANG X P, WANG L R. Characteristics of phosphorous adsorption in aqueous solution by Si-modified peanut shell biochar[J/OL]. Environmental Science, 2021. doi: 10.13227/j.hjkx.202103012.
    [24] 梁宁, 莫福金, 周街荣, 等.污泥生物炭制备及其对磷的吸附性能研究[J]. 无机盐工业,2021,53(6):174-179.

    LIANG N, MO F J, ZHOU J R, et al. Study on preparation of sludge biochar and its adsorption performance for phosphorus[J]. Inorganic Chemicals Industry,2021,53(6):174-179.
    [25] 肖作义, 肖宇, 肖明慧, 等.磁性水滑石/生物炭复合材料的制备及其对水溶液中磷的吸附性能[J]. 环境污染与防治,2020,42(9):1090-1095. doi: 10.15985/j.cnki.1001-3865.2020.09.005

    XIAO Z Y, XIAO Y, XIAO M H, et al. Preparation of magnetic hydrotalcite/biochar composite and its adsorption performance for phosphorus in aqueous solution[J]. Environmental Pollution & Control,2020,42(9):1090-1095. doi: 10.15985/j.cnki.1001-3865.2020.09.005
    [26] 张晓, 陈晨, 程婷, 等.微孔碳@粉煤灰颗粒复合材料合成及其吸附磷应用[J]. 有色金属工程,2020,10(9):134-144. doi: 10.3969/j.issn.2095-1744.2020.09.020

    ZHANG X, CHEN C, CHENG T, et al. Synthesis of micro-porous Carbon@Fly ash particle composite material and its application to phosphorus adsorption[J]. Nonferrous Metals Engineering,2020,10(9):134-144. doi: 10.3969/j.issn.2095-1744.2020.09.020
    [27] YE J E, CONG X N, ZHANG P Y, et al. Interaction between phosphate and acid-activated neutralized red mud during adsorption process[J]. Applied Surface Science,2015,356:128-134. □ doi: 10.1016/j.apsusc.2015.08.053
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  164
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21

目录

    /

    返回文章
    返回