留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巴音布鲁克高寒草原植被覆盖度时空格局及影响因素

吾甫尔·托乎提 吕田田 赛·巴雅尔图 冯朝阳

吾甫尔·托乎提,吕田田,赛·巴雅尔图,等.巴音布鲁克高寒草原植被覆盖度时空格局及影响因素[J].环境工程技术学报,2022,12(5):1395-1401 doi: 10.12153/j.issn.1674-991X.20210353
引用本文: 吾甫尔·托乎提,吕田田,赛·巴雅尔图,等.巴音布鲁克高寒草原植被覆盖度时空格局及影响因素[J].环境工程技术学报,2022,12(5):1395-1401 doi: 10.12153/j.issn.1674-991X.20210353
WUFUER·T H T,LÜ T,,et al.Temporal-spatial patterns and influencing factors of vegetation coverage in Bayanbulak Alpine Grassland, China[J].Journal of Environmental Engineering Technology,2022,12(5):1395-1401 doi: 10.12153/j.issn.1674-991X.20210353
Citation: WUFUER·T H T,LÜ T,,et al.Temporal-spatial patterns and influencing factors of vegetation coverage in Bayanbulak Alpine Grassland, China[J].Journal of Environmental Engineering Technology,2022,12(5):1395-1401 doi: 10.12153/j.issn.1674-991X.20210353

巴音布鲁克高寒草原植被覆盖度时空格局及影响因素

doi: 10.12153/j.issn.1674-991X.20210353
基金项目: 国家环境保护公益性行业科研专项(20130315)
详细信息
    作者简介:

    吾甫尔·托乎提(1971—),男,高级工程师,主要从事流域生态环境研究,122061047@qq.com

  • 中图分类号: X171

Temporal-spatial patterns and influencing factors of vegetation coverage in Bayanbulak Alpine Grassland, China

  • 摘要:

    基于MODIS NDVI数据采用线性混合光谱模型,对巴音布鲁克草原2000—2020年植被覆盖度状况进行测算,采用一元回归线性分析方法分析了其时空变化特征,以及气象、地形和土地覆被变化对区域植被覆盖度的影响。结果显示:1)2000—2020年巴音布鲁克草原平均植被覆盖度为46.19%,总体呈西部高东部低的空间分布格局。植被覆盖度大于60%的区域分布在西北部和南部,面积占比为24.70%;植被覆盖度小于15%的区域面积占比为19.91%,分布在研究区边缘。2)2000—2020年巴音布鲁克草原植被覆盖度呈先下降后升高的变化趋势,总体年下降速率为0.093%。像元尺度上,大部分地区植被覆盖度基本不变,呈降低趋势的面积占比为24.86%,呈面状分布在中东部和北部;呈增加趋势的面积占比为10.54%,分散分布在研究区中部和西部边缘。3)植被覆盖度随着海拔升高逐渐降低,阳坡植被覆盖度总体低于阴坡;年降水量和年平均气温对植被覆盖度的影响具有明显的空间异质性,分别约10.70%和13.99%的地区植被覆盖度与当年降水量和上年降水量呈正相关,8.23%和11.11%的地区植被覆盖度与当年和上年平均气温呈正相关,8.23%和5.35%的地区与当年和上年平均气温呈负相关。土地覆被类型的转化,尤其是冰川和永久积雪的减少促进了植被覆盖度的变化。

     

  • 图  1  2000—2020年巴音布鲁克草原平均植被覆盖度空间分布

    Figure  1.  Spatial distribution map of the average FVC of Bayinbulak Grassland from 2000 to 2020

    图  2  2000—2020年巴音布鲁克草原植被覆盖度年际变化

    Figure  2.  Interannual variability of FVC in Bayanbulak Grassland from 2000 to 2020

    图  3  2000—2020年巴音布鲁克植被覆盖度变化等级空间分布

    Figure  3.  Spatial change distribution of FVC change grade in Bayanbulak from 2000 to 2020

    图  4  植被覆盖度与年降水量相关关系空间分布

    Figure  4.  Spatial distribution map of the relationship between FVC and annual precipitation

    图  5  植被覆盖度与年平均气温的相关关系空间分布

    Figure  5.  Spatial distribution map of the relationship between FVC and annual average temperature

    图  6  2000—2020年巴音布鲁克草原不同土地覆被转移情况

    Figure  6.  Change of different land cover in Bayanbulak Grassland from 2000 to 2020

    表  1  2000—2020年不同海拔植被覆盖度及其变化情况

    Table  1.   FVC and its changes in different elevation intervals from 2000 to 2020

    海拔区间/m多年平均FVC/%FVC变化等级占比/%
    明显增加略微增加基本不变略微降低明显降低
    919~1 50065.923.333.9979.165.418.11
    1 500~2 00064.430.260.6757.1814.7227.17
    2 000~2 50056.005.384.5767.978.7513.33
    2 500~3 00050.613.133.1370.0011.1412.6
    3 000~3 50048.669.825.2559.308.7816.85
    3 500~4 00021.969.395.0758.097.0620.39
    4 000~4 5928.823.944.6072.407.6511.41
    下载: 导出CSV

    表  2  植被覆盖度与气象要素的相关关系统计

    Table  2.   Correlation diagram of FVC with annual precipitation and annual average temperature % 

    各类别占比极显著正
    相关
    显著正
    相关
    不显著
    相关
    显著负
    相关
    极显著负
    相关
    当年降水量3.707.0088.480.820.00
    上年降水量2.4711.5286.010.000.00
    当年平均气温1.656.5883.546.172.06
    上年平均气温3.707.4183.542.472.88
    注:相关系数为正且P≤0.01,极显著正相关;相关系数为正且0.01<P≤0.05,显著正相关;相关系数为负且0.01<P≤0.05,显著负相关;相关系数为负且P≤0.01,极显著负相关;P>0.05,不显著相关。
    下载: 导出CSV
  • [1] GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87. doi: 10.1016/S0034-4257(01)00289-9
    [2] 闫萧萧, 李晶, 杨震.2000—2016年陈巴尔虎旗植被覆盖度时空变化遥感动态监测[J]. 中国农业大学学报,2018,23(6):121-129. doi: 10.11841/j.issn.1007-4333.2018.06.14

    YAN X X, LI J, YANG Z. Dynamicremote sensing monitoring on the temporal-spatial changes of vegetation coverage in Chen Barag Banner from 2000 to 2016[J]. Journal of China Agricultural University,2018,23(6):121-129. doi: 10.11841/j.issn.1007-4333.2018.06.14
    [3] 陆荫, 张强, 李晓红, 等.黄河流域甘肃段植被覆盖度时空变化及对气候因子的响应[J]. 水土保持通报,2020,40(2):232-238.

    LU Y, ZHANG Q, LI X H, et al. Temporal and spatial variation of vegetation coverage and its response to climate factors in Gansu section of Yellow River Basin[J]. Bulletin of Soil and Water Conservation,2020,40(2):232-238.
    [4] SHOSHANY M, KUTIEL P, LAVEE H. Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique: case study of the Judean Mountain and the Judean Desert[J]. Journal of Arid Environments,1996,33(1):9-21. doi: 10.1006/jare.1996.0042
    [5] 彭继达, 张春桂.基于高分一号遥感影像的植被覆盖遥感监测: 以厦门市为例[J]. 国土资源遥感,2019,31(4):137-142.

    PENG J D, ZHANG C G. Remote sensing monitoring of vegetation coverage by GF-1 satellite: a case study in Xiamen City[J]. Remote Sensing for Land & Resources,2019,31(4):137-142.
    [6] 姚镇海, 吴丹娃, 褚荣浩, 等.安徽省植被覆盖度动态变化及其对地形的响应[J]. 水土保持通报,2021,41(3):283-290.

    YAO Z H, WU D W, CHU R H, et al. Dynamic change of vegetation coverage and its response to topography in Anhui Province[J]. Bulletin of Soil and Water Conservation,2021,41(3):283-290.
    [7] 陈艳梅, 高吉喜, 冯朝阳, 等.1982—2010年呼伦贝尔植被净初级生产力时空格局[J]. 生态与农村环境学报,2012,28(6):647-653. doi: 10.3969/j.issn.1673-4831.2012.06.007

    CHEN Y M, GAO J X, FENG C Y, et al. Temporal and spatial distribution of vegetation net primary productivity (NPP) in the years from 1982 to 2010 in Hulunbeier[J]. Journal of Ecology and Rural Environment,2012,28(6):647-653. doi: 10.3969/j.issn.1673-4831.2012.06.007
    [8] 杨峰, 李建龙, 钱育蓉, 等.天山北坡典型退化草地植被覆盖度监测模型构建与评价[J]. 自然资源学报,2012,27(8):1340-1348. doi: 10.11849/zrzyxb.2012.08.008

    YANG F, LI J L, QIAN Y R, et al. Estimating vegetation coverage of typical degraded grassland in the northern Tianshan Mountains[J]. Journal of Natural Resources,2012,27(8):1340-1348. doi: 10.11849/zrzyxb.2012.08.008
    [9] 吕聪. 基于MODIS NDVI的新疆巴音布鲁克草原植被覆盖度时空变化特征及影响因素分析[D]. 石家庄: 河北师范大学, 2016.
    [10] 关欣, 安沙舟, 荀其蕾, 等.巴音布鲁克草原高寒草原植被覆盖度反演模型构建与评价[J]. 草业科学,2018,35(5):949-955.

    GUAN X, AN S Z, XUN Q L, et al. Construction and evaluation of a vegetation coverage retrieval model for alpine prairie in Bayanbulak grassland[J]. Pratacultural Science,2018,35(5):949-955.
    [11] SEDDON A W R, MACIAS-FAURIA M, LONG P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature,2016,531(7593):229-232. doi: 10.1038/nature16986
    [12] 郭金停, 胡远满, 熊在平, 等.中国东北多年冻土区植被生长季NDVI时空变化及其对气候变化的响应[J]. 应用生态学报,2017,28(8):2413-2422.

    GUO J T, HU Y M, XIONG Z P, et al. Spatiotemporal variations of growing-season NDVI and response to climate change in permafrost zone of Northeast China[J]. Chinese Journal of Applied Ecology,2017,28(8):2413-2422.
    [13] ALI R, KURIQI A, ABUBAKER S, et al. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen's innovative trend method[J]. Water,2019,11(9):1855. doi: 10.3390/w11091855
    [14] AHMED K, SHAHID S, NAWAZ N, et al. Modeling climate change impacts on precipitation in arid regions of Pakistan: a non-local model output statistics downscaling approach[J]. Theoretical and Applied Climatology,2019,137(1/2):1347-1364.
    [15] 杨春艳, 高艳妮, 刘学, 等.辽河保护区植被覆盖度时空动态变化及驱动因素[J]. 环境工程技术学报,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030

    YANG C Y, GAO Y N, LIU X, et al. Spatial-temporal dynamic change of fractional vegetation coverage and its driving factors in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030
    [16] 赵艳华, 苏德, 包扬, 等.阴山北麓草原生态功能区植被覆盖度遥感动态监测[J]. 环境科学研究,2017,30(2):240-248.

    ZHAO Y H, SU D, BAO Y, et al. Dynamic monitoring of fractional vegetation cover of eco-function area of grassland on northern foot of Yinshan Mountains through remote sensing technology[J]. Research of Environmental Sciences,2017,30(2):240-248.
    [17] 王建国, 张飞.2000—2019年新疆植被覆盖度时空格局及重心变化分析[J]. 农业工程学报,2020,36(20):188-194. doi: 10.11975/j.issn.1002-6819.2020.20.022

    WANG J G, ZHANG F. Spatial-temporal pattern and gravity center change of fractional vegetation cover in Xinjiang, China from 2000 to 2019[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(20):188-194. doi: 10.11975/j.issn.1002-6819.2020.20.022
    [18] 穆少杰, 李建龙, 陈奕兆, 等.2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报,2012,67(9):1255-1268. doi: 10.11821/xb201209010

    MU S J, LI J L, CHEN Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica,2012,67(9):1255-1268. doi: 10.11821/xb201209010
    [19] 邓伟, 袁兴中, 刘红, 等.区域性气候变化对长江中下游流域植被覆盖的影响[J]. 环境科学研究,2014,27(9):1032-1042.

    DENG W, YUAN X Z, LIU H, et al. Influence of regional climate change on vegetation cover in the middle and Lower Yangtze River Basin[J]. Research of Environmental Sciences,2014,27(9):1032-1042.
    [20] NING T T, LIU W Z, LIN W, et al. NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012[J]. Advances in Meteorology,2015,2015:725427.
    [21] LI P, WANG J, LIU M M, et al. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015[J]. CATENA,2021,203:105331. doi: 10.1016/j.catena.2021.105331
    [22] XU S J, ZENG B, SU X L, et al. Spatial distribution of vegetation and carbon density in Jinyun Mountain Nature Reserve based on RS/GIS[J]. Acta Ecologica Sinica,2012,32(7):2174-2184. doi: 10.5846/stxb201108021134
    [23] 韩贵锋, 叶林, 孙忠伟.山地城市坡向对地表温度的影响: 以重庆市主城区为例[J]. 生态学报,2014,34(14):4017-4024.

    HAN G F, YE L, SUN Z W. Influence of aspect on land surface temperature in mountainous city: a case study in central area of Chongqing City[J]. Acta Ecologica Sinica,2014,34(14):4017-4024.
    [24] 杨静雅, 李新国, 闫凯, 等.基于NDVI的新疆和静县草地植被覆盖动态变化及其与气温降水的关系[J]. 生态科学,2018,37(6):38-44.

    YANG J Y, LI X G, YAN K, et al. Grassland vegetation dynamics and the relationship between the temperature and precipitation in Hejing County, Xinjiang, Based on NDVI[J]. Ecological Science,2018,37(6):38-44. ⊕
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  148
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-24

目录

    /

    返回文章
    返回