Temporal-spatial patterns and influencing factors of vegetation coverage in Bayanbulak Alpine Grassland, China
-
摘要:
基于MODIS NDVI数据采用线性混合光谱模型,对巴音布鲁克草原2000—2020年植被覆盖度状况进行测算,采用一元回归线性分析方法分析了其时空变化特征,以及气象、地形和土地覆被变化对区域植被覆盖度的影响。结果显示:1)2000—2020年巴音布鲁克草原平均植被覆盖度为46.19%,总体呈西部高东部低的空间分布格局。植被覆盖度大于60%的区域分布在西北部和南部,面积占比为24.70%;植被覆盖度小于15%的区域面积占比为19.91%,分布在研究区边缘。2)2000—2020年巴音布鲁克草原植被覆盖度呈先下降后升高的变化趋势,总体年下降速率为0.093%。像元尺度上,大部分地区植被覆盖度基本不变,呈降低趋势的面积占比为24.86%,呈面状分布在中东部和北部;呈增加趋势的面积占比为10.54%,分散分布在研究区中部和西部边缘。3)植被覆盖度随着海拔升高逐渐降低,阳坡植被覆盖度总体低于阴坡;年降水量和年平均气温对植被覆盖度的影响具有明显的空间异质性,分别约10.70%和13.99%的地区植被覆盖度与当年降水量和上年降水量呈正相关,8.23%和11.11%的地区植被覆盖度与当年和上年平均气温呈正相关,8.23%和5.35%的地区与当年和上年平均气温呈负相关。土地覆被类型的转化,尤其是冰川和永久积雪的减少促进了植被覆盖度的变化。
Abstract:Based on MODIS NDVI data, the fractional vegetation cover (FVC) of Bayanbulak Grassland was measured from 2000 to 2020 by using a linear mixed spectral model, and the spatial-temporal variation patterns were analyzed by using the linear regression method. Besides, the influence of meteorological, terrain and land cover changes on regional FVC were analyzed. The results were as follows: 1) From 2000 to 2020, the average FVC of Bayanbulak Grassland was 46.19%, which showed a spatial distribution pattern of high in the west and low in the east. Areas with FVC greater than 60% were distributed in the northwest and south, accounting for 24.70% of the total area; areas with FVC lower than 15% were distributed at the edge of the study area. 2) FVC showed a trend of decreasing first and then increasing from 2000 to 2020, with an average annual decline rate of 0.093%; on the pixel scale, FVC remained basically unchanged in most areas, and the areas with a decreasing trend accounted for 24.86%, faceted in the central-east and north, and the areas with an increasing trend accounted for 10.54%, distributed in the edge of the middle and west of the study area. 3) FVC gradually decreased with elevation, and it was generally lower on the sunny slope than that on the shady slope. The effects of annual precipitation and annually average temperature on FVC showed significant spatial heterogeneity. About 10.70% and 13.99% of the regions had a positive correlation between FVC with the current year's precipitation and the last year's precipitation, and 8.23% and 11.11% of the regions had a positive correlation between FVC with the current year's average temperature and the last year's average temperature, and 8.23% and 5.35% of the regions had a negative correlation between FVC with the current year's average temperature and the last year's average temperature. The transformation of land cover types, especially the reduction of glaciers and permanent snow cover, contributed to the change of FVC.
-
表 1 2000—2020年不同海拔植被覆盖度及其变化情况
Table 1. FVC and its changes in different elevation intervals from 2000 to 2020
海拔区间/m 多年平均FVC/% FVC变化等级占比/% 明显增加 略微增加 基本不变 略微降低 明显降低 919~1 500 65.92 3.33 3.99 79.16 5.41 8.11 1 500~2 000 64.43 0.26 0.67 57.18 14.72 27.17 2 000~2 500 56.00 5.38 4.57 67.97 8.75 13.33 2 500~3 000 50.61 3.13 3.13 70.00 11.14 12.6 3 000~3 500 48.66 9.82 5.25 59.30 8.78 16.85 3 500~4 000 21.96 9.39 5.07 58.09 7.06 20.39 4 000~4 592 8.82 3.94 4.60 72.40 7.65 11.41 表 2 植被覆盖度与气象要素的相关关系统计
Table 2. Correlation diagram of FVC with annual precipitation and annual average temperature
% 各类别占比 极显著正
相关显著正
相关不显著
相关显著负
相关极显著负
相关当年降水量 3.70 7.00 88.48 0.82 0.00 上年降水量 2.47 11.52 86.01 0.00 0.00 当年平均气温 1.65 6.58 83.54 6.17 2.06 上年平均气温 3.70 7.41 83.54 2.47 2.88 注:相关系数为正且P≤0.01,极显著正相关;相关系数为正且0.01<P≤0.05,显著正相关;相关系数为负且0.01<P≤0.05,显著负相关;相关系数为负且P≤0.01,极显著负相关;P>0.05,不显著相关。 -
[1] GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment,2002,80(1):76-87. doi: 10.1016/S0034-4257(01)00289-9 [2] 闫萧萧, 李晶, 杨震.2000—2016年陈巴尔虎旗植被覆盖度时空变化遥感动态监测[J]. 中国农业大学学报,2018,23(6):121-129. doi: 10.11841/j.issn.1007-4333.2018.06.14YAN X X, LI J, YANG Z. Dynamicremote sensing monitoring on the temporal-spatial changes of vegetation coverage in Chen Barag Banner from 2000 to 2016[J]. Journal of China Agricultural University,2018,23(6):121-129. doi: 10.11841/j.issn.1007-4333.2018.06.14 [3] 陆荫, 张强, 李晓红, 等.黄河流域甘肃段植被覆盖度时空变化及对气候因子的响应[J]. 水土保持通报,2020,40(2):232-238.LU Y, ZHANG Q, LI X H, et al. Temporal and spatial variation of vegetation coverage and its response to climate factors in Gansu section of Yellow River Basin[J]. Bulletin of Soil and Water Conservation,2020,40(2):232-238. [4] SHOSHANY M, KUTIEL P, LAVEE H. Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique: case study of the Judean Mountain and the Judean Desert[J]. Journal of Arid Environments,1996,33(1):9-21. doi: 10.1006/jare.1996.0042 [5] 彭继达, 张春桂.基于高分一号遥感影像的植被覆盖遥感监测: 以厦门市为例[J]. 国土资源遥感,2019,31(4):137-142.PENG J D, ZHANG C G. Remote sensing monitoring of vegetation coverage by GF-1 satellite: a case study in Xiamen City[J]. Remote Sensing for Land & Resources,2019,31(4):137-142. [6] 姚镇海, 吴丹娃, 褚荣浩, 等.安徽省植被覆盖度动态变化及其对地形的响应[J]. 水土保持通报,2021,41(3):283-290.YAO Z H, WU D W, CHU R H, et al. Dynamic change of vegetation coverage and its response to topography in Anhui Province[J]. Bulletin of Soil and Water Conservation,2021,41(3):283-290. [7] 陈艳梅, 高吉喜, 冯朝阳, 等.1982—2010年呼伦贝尔植被净初级生产力时空格局[J]. 生态与农村环境学报,2012,28(6):647-653. doi: 10.3969/j.issn.1673-4831.2012.06.007CHEN Y M, GAO J X, FENG C Y, et al. Temporal and spatial distribution of vegetation net primary productivity (NPP) in the years from 1982 to 2010 in Hulunbeier[J]. Journal of Ecology and Rural Environment,2012,28(6):647-653. doi: 10.3969/j.issn.1673-4831.2012.06.007 [8] 杨峰, 李建龙, 钱育蓉, 等.天山北坡典型退化草地植被覆盖度监测模型构建与评价[J]. 自然资源学报,2012,27(8):1340-1348. doi: 10.11849/zrzyxb.2012.08.008YANG F, LI J L, QIAN Y R, et al. Estimating vegetation coverage of typical degraded grassland in the northern Tianshan Mountains[J]. Journal of Natural Resources,2012,27(8):1340-1348. doi: 10.11849/zrzyxb.2012.08.008 [9] 吕聪. 基于MODIS NDVI的新疆巴音布鲁克草原植被覆盖度时空变化特征及影响因素分析[D]. 石家庄: 河北师范大学, 2016. [10] 关欣, 安沙舟, 荀其蕾, 等.巴音布鲁克草原高寒草原植被覆盖度反演模型构建与评价[J]. 草业科学,2018,35(5):949-955.GUAN X, AN S Z, XUN Q L, et al. Construction and evaluation of a vegetation coverage retrieval model for alpine prairie in Bayanbulak grassland[J]. Pratacultural Science,2018,35(5):949-955. [11] SEDDON A W R, MACIAS-FAURIA M, LONG P R, et al. Sensitivity of global terrestrial ecosystems to climate variability[J]. Nature,2016,531(7593):229-232. doi: 10.1038/nature16986 [12] 郭金停, 胡远满, 熊在平, 等.中国东北多年冻土区植被生长季NDVI时空变化及其对气候变化的响应[J]. 应用生态学报,2017,28(8):2413-2422.GUO J T, HU Y M, XIONG Z P, et al. Spatiotemporal variations of growing-season NDVI and response to climate change in permafrost zone of Northeast China[J]. Chinese Journal of Applied Ecology,2017,28(8):2413-2422. [13] ALI R, KURIQI A, ABUBAKER S, et al. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen's innovative trend method[J]. Water,2019,11(9):1855. doi: 10.3390/w11091855 [14] AHMED K, SHAHID S, NAWAZ N, et al. Modeling climate change impacts on precipitation in arid regions of Pakistan: a non-local model output statistics downscaling approach[J]. Theoretical and Applied Climatology,2019,137(1/2):1347-1364. [15] 杨春艳, 高艳妮, 刘学, 等.辽河保护区植被覆盖度时空动态变化及驱动因素[J]. 环境工程技术学报,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030YANG C Y, GAO Y N, LIU X, et al. Spatial-temporal dynamic change of fractional vegetation coverage and its driving factors in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030 [16] 赵艳华, 苏德, 包扬, 等.阴山北麓草原生态功能区植被覆盖度遥感动态监测[J]. 环境科学研究,2017,30(2):240-248.ZHAO Y H, SU D, BAO Y, et al. Dynamic monitoring of fractional vegetation cover of eco-function area of grassland on northern foot of Yinshan Mountains through remote sensing technology[J]. Research of Environmental Sciences,2017,30(2):240-248. [17] 王建国, 张飞.2000—2019年新疆植被覆盖度时空格局及重心变化分析[J]. 农业工程学报,2020,36(20):188-194. doi: 10.11975/j.issn.1002-6819.2020.20.022WANG J G, ZHANG F. Spatial-temporal pattern and gravity center change of fractional vegetation cover in Xinjiang, China from 2000 to 2019[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(20):188-194. doi: 10.11975/j.issn.1002-6819.2020.20.022 [18] 穆少杰, 李建龙, 陈奕兆, 等.2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报,2012,67(9):1255-1268. doi: 10.11821/xb201209010MU S J, LI J L, CHEN Y Z, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010[J]. Acta Geographica Sinica,2012,67(9):1255-1268. doi: 10.11821/xb201209010 [19] 邓伟, 袁兴中, 刘红, 等.区域性气候变化对长江中下游流域植被覆盖的影响[J]. 环境科学研究,2014,27(9):1032-1042.DENG W, YUAN X Z, LIU H, et al. Influence of regional climate change on vegetation cover in the middle and Lower Yangtze River Basin[J]. Research of Environmental Sciences,2014,27(9):1032-1042. [20] NING T T, LIU W Z, LIN W, et al. NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012[J]. Advances in Meteorology,2015,2015:725427. [21] LI P, WANG J, LIU M M, et al. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015[J]. CATENA,2021,203:105331. doi: 10.1016/j.catena.2021.105331 [22] XU S J, ZENG B, SU X L, et al. Spatial distribution of vegetation and carbon density in Jinyun Mountain Nature Reserve based on RS/GIS[J]. Acta Ecologica Sinica,2012,32(7):2174-2184. doi: 10.5846/stxb201108021134 [23] 韩贵锋, 叶林, 孙忠伟.山地城市坡向对地表温度的影响: 以重庆市主城区为例[J]. 生态学报,2014,34(14):4017-4024.HAN G F, YE L, SUN Z W. Influence of aspect on land surface temperature in mountainous city: a case study in central area of Chongqing City[J]. Acta Ecologica Sinica,2014,34(14):4017-4024. [24] 杨静雅, 李新国, 闫凯, 等.基于NDVI的新疆和静县草地植被覆盖动态变化及其与气温降水的关系[J]. 生态科学,2018,37(6):38-44.YANG J Y, LI X G, YAN K, et al. Grassland vegetation dynamics and the relationship between the temperature and precipitation in Hejing County, Xinjiang, Based on NDVI[J]. Ecological Science,2018,37(6):38-44. ⊕