留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析

王勇 张耀宗 毕莹莹 杜明辉 孙晓明

王勇,张耀宗,毕莹莹,等.含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析[J].环境工程技术学报,2022,12(5):1500-1507 doi: 10.12153/j.issn.1674-991X.20210355
引用本文: 王勇,张耀宗,毕莹莹,等.含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析[J].环境工程技术学报,2022,12(5):1500-1507 doi: 10.12153/j.issn.1674-991X.20210355
WANG Y,ZHANG Y Z,BI Y Y,et al.Optimization and mechanism analysis of α-Fe2O3 catalytic ozone oxidation parameters for phenolic wastewater[J].Journal of Environmental Engineering Technology,2022,12(5):1500-1507 doi: 10.12153/j.issn.1674-991X.20210355
Citation: WANG Y,ZHANG Y Z,BI Y Y,et al.Optimization and mechanism analysis of α-Fe2O3 catalytic ozone oxidation parameters for phenolic wastewater[J].Journal of Environmental Engineering Technology,2022,12(5):1500-1507 doi: 10.12153/j.issn.1674-991X.20210355

含酚废水α-Fe2O3催化臭氧氧化参数优化及机理分析

doi: 10.12153/j.issn.1674-991X.20210355
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07402-002)
详细信息
    作者简介:

    王勇(1997—),男,硕士研究生,主要从事水污染控制与废水资源化研究,1833055310@qq.com

    通讯作者:

    孙晓明(1978—),男,研究员,博士,主要从事水污染控制与废水资源化研究,sunxm52@126.com

  • 中图分类号: X703

Optimization and mechanism analysis of α-Fe2O3 catalytic ozone oxidation parameters for phenolic wastewater

  • 摘要:

    传统工艺对含酚废水的处理效果有限,催化臭氧氧化技术能够有效处理含酚废水。α-Fe2O3在试验中表现出了高臭氧催化活性,催化产生的·OH可对苯酚及中间产物进行无选择性矿化,显著增强了污染物去除效果和臭氧利用水平。为明确催化臭氧氧化过程主要影响因素并优化工艺参数,以苯酚模拟含酚废水,设计了L16(44)正交试验。结果表明,臭氧投加量、催化剂投加量、pH、反应时间是COD去除率及单位臭氧COD降解量的主要影响因素,其中,臭氧投加量与反应时间的影响较为显著。方差分析与试验验证表明,催化剂投加量对COD去除率影响较小,pH对单位臭氧COD降解量影响较小。通过权矩阵计算得到优化后的反应条件:臭氧投加量为5 mg/(L·min),催化剂投加量为0.10 g/L,pH为9,反应时间为45 min。叔丁醇屏蔽试验表明,·OH显著促进了催化臭氧氧化进程。

     

  • 图  1  试验流程

    Figure  1.  Experimental flow chart

    图  2  α-Fe2O3的SEM图

    Figure  2.  SEM images of α-Fe2O3

    图  3  COD去除率和单位臭氧COD降解量正交试验效应曲线

    Figure  3.  Orthogonal test effect curve of COD removal rate and COD degradation per unit ozone

    图  4  臭氧投加量对2项指标影响

    Figure  4.  Influence of ozone dosage on two indicators

    图  5  催化剂投加量对2项指标影响

    Figure  5.  Impact of catalyst dosage on two indicators

    图  6  pH对2项指标影响

    Figure  6.  Influence of pH on two indicators

    图  7  臭氧氧化技术处理苯酚废水的降解过程

    Figure  7.  Degradation process of phenol wastewater by ozone oxidation

    表  1  α-Fe2O3催化臭氧氧化苯酚废水正交试验因素及水平

    Table  1.   Orthogonal experiment factors and level of α-Fe2O3 catalytic ozonation of phenol wastewater

    水平A/〔mg/(L·min)〕B/(g/L)CD/min
    130.01515
    250.05730
    3100.10945
    4130.501160
    下载: 导出CSV

    表  2  正交试验设计及试验结果

    Table  2.   Orthogonal experimental design and experimental results

    编号ABCDCOD去除率/%单位臭氧COD降解量/(g/mg)
    1111117.680.15
    2122227.890.24
    3133347.670.41
    4144432.540.28
    5211233.710.15
    6223145.340.20
    7232469.760.30
    8244375.580.33
    9312382.560.18
    10324480.230.17
    11331136.040.08
    12343272.090.16
    13413482.560.14
    14421363.950.11
    15434269.760.12
    16442153.480.09
    下载: 导出CSV

    表  3  正交试验方差分析

    Table  3.   Orthogonal test variance analysis

    正交参数ABCD
    COD去除率K1125.78216.51166.24152.53
    K2224.39217.41233.69203.45
    K3270.91223.22247.65269.75
    K4269.74233.69243.25265.09
    k131.4554.1341.5638.13
    k256.1054.3558.4250.86
    k367.7355.8161.9167.44
    k467.4458.4260.8166.27
    R136.284.2920.3529.30
    单位臭氧COD降解量Z11.090.610.610.51
    Z20.970.720.810.66
    Z30.580.910.901.02
    Z40.450.850.770.89
    z10.270.150.160.13
    z20.240.180.200.16
    z30.150.230.220.26
    z40.110.210.180.22
    R20.160.070.060.13
    下载: 导出CSV

    表  4  影响因素方差分析

    Table  4.   Variance analysis of influencing factors

    指标试验因素均方F显著性
    COD去除率/%A1 681.46373.66++
    B29.186.48
    C387.2786.06++
    D355.2578.95++
    单位臭氧COD
    降解量/(g/mg)
    A0.22050.90++
    B0.0049.95+
    C0.0048.24
    D0.01329.25++
    注:+指因素通过0.05的显著性检验;++指因素通过0.01的显著性检验;−指因素影响不显著。
    下载: 导出CSV

    表  5  优化参数条件下试验结果

    Table  5.   Experimental results under optimized parameters

    指标试验1试验2试验3均值
    COD去除率/%96.8397.6697.4497.31
    单位臭氧COD降解量/(g/mg)0.560.560.560.56
    下载: 导出CSV
  • [1] ALSHABIB M, ONAIZI S A. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges[J]. Separation and Purification Technology,2019,219:186-207. doi: 10.1016/j.seppur.2019.03.028
    [2] LI M, CHEN Z Q, WANG Z Z, et al. Investigation on degradation behavior of dissolved effluent organic matter, organic micro-pollutants and bio-toxicity reduction from secondary effluent treated by ozonation[J]. Chemosphere,2019,217:223-231. doi: 10.1016/j.chemosphere.2018.11.039
    [3] 李亚男, 谭煜, 吴昌永, 等.臭氧催化氧化在石化废水深度处理应用中的若干问题[J]. 环境工程技术学报,2019,9(3):275-281. doi: 10.12153/j.issn.1674-991X.2019.02.280

    LI Y N, TAN Y, WU C Y, et al. Application and problems of catalytic ozonation in advanced treatment of petrochemical wastewater[J]. Journal of Environmental Engineering Technology,2019,9(3):275-281. doi: 10.12153/j.issn.1674-991X.2019.02.280
    [4] KHUNTIA S, SINHA M K, SINGH P. Theoretical and experimental investigation of the mechanism of the catalytic ozonation process by using a manganese-based catalyst[J]. Environmental Technology,2021,42(4):632-639. doi: 10.1080/09593330.2019.1640800
    [5] 陈炜彧, 李旭芳, 马鲁铭.铁基催化剂催化臭氧深度处理煤化工废水[J]. 环境工程学报,2018,12(1):86-92. doi: 10.12030/j.cjee.201706031

    CHEN W Y, LI X F, MA L M. Advanced treatment of coal chemical wastewater by catalytic ozonation with iron-based catalyst[J]. Chinese Journal of Environmental Engineering,2018,12(1):86-92. doi: 10.12030/j.cjee.201706031
    [6] ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science and Engineering:R:Reports,2014,77:1-34. doi: 10.1016/j.mser.2014.01.001
    [7] TRAPIDO M, VERESSININA Y, MUNTER R, et al. Catalytic ozonation of m-dinitrobenzene[J]. Ozone:Science & Engineering,2005,27(5):359-363.
    [8] HE S M, LI J, XU J, et al. Heterogeneous catalytic ozonation of paper-making wastewater with α-Fe2O3/γ-Al2O3 as a catalyst for increased TOC and color removals[J]. Desalination and Water Treatment,2017,95:192-199. doi: 10.5004/dwt.2017.21535
    [9] WANG B, ZHANG H, WANG F F, et al. Application of heterogeneous catalytic ozonation for refractory organics in wastewater[J]. Catalysts,2019,9(3):241. doi: 10.3390/catal9030241
    [10] 朱秋实, 陈进富, 姜海洋, 等.臭氧催化氧化机理及其技术研究进展[J]. 化工进展,2014,33(4):1010-1014. doi: 10.3969/j.issn.1000-6613.2014.04.038

    ZHU Q S, CHEN J F, JIANG H Y, et al. A review of catalytic ozonation: mechanisms and efficiency[J]. Chemical Industry and Engineering Progress,2014,33(4):1010-1014. doi: 10.3969/j.issn.1000-6613.2014.04.038
    [11] 王吉坤, 李阳, 陈贵锋, 等.臭氧催化氧化降解煤化工生化进水有机物的实验及机理研究[J]. 化工进展,2021,40(10):5837-5844.

    WANG J Y, LI Y, CHEN G F, et al. Experimental and mechanism studies on degradation of the organics in biochemical influent of coal chemical industry by ozone catalytic oxidation[J]. Chemical Industry and Engineering Progress,2021,40(10):5837-5844.
    [12] TRAVAINI R, BARRADO E, BOLADO-RODRÍGUEZ S. Effect of ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse[J]. Bioresource Technology,2016,214:150-158. doi: 10.1016/j.biortech.2016.04.102
    [13] 李光耀, 陈强, 郭文凯, 等.基于正交试验的臭氧及其前体物的非线性响应及控制方案[J]. 环境科学,2021,42(2):616-623. doi: 10.13227/j.hjkx.202007026

    LI G Y, CHEN Q, GUO W K, et al. Nonlinear response characteristics and control scheme for ozone and its precursors based on orthogonal experimental methods[J]. Environmental Science,2021,42(2):616-623. doi: 10.13227/j.hjkx.202007026
    [14] KNOWLES S L, VU N, TODD D A, et al. Orthogonal method for double-bond placement via ozone-induced dissociation mass spectrometry (OzID-MS)[J]. Journal of Natural Products,2019,82(12):3421-3431. doi: 10.1021/acs.jnatprod.9b00787
    [15] 季伟伟, 杨慧中.基于正交实验的水质COD在线测试最优消解条件[J]. 环境工程学报,2016,10(7):3967-3972. doi: 10.12030/j.cjee.201501227

    JI W W, YANG H Z. Optimum digestion conditions for on-line monitoring of COD in water based on orthogonal experimental method[J]. Chinese Journal of Environmental Engineering,2016,10(7):3967-3972. doi: 10.12030/j.cjee.201501227
    [16] JUYBARI M N, GUILANI P P, ARDAKAN M A. Bi-objective sequence optimization in reliability problems with a matrix-analytic approach[J]. Annals of Operations Research,2021:1-30.
    [17] RAHMAN M, MAHMOOD A, YOUNIS M. Improved and more feasible numerical methods for Riesz space fractional partial differential equations[J]. Applied Mathematics and Computation,2014,237:264-273. doi: 10.1016/j.amc.2014.03.103
    [18] MOHAMMADI L, BAZRAFSHAN E, NOROOZIFAR M, et al. Removing 2, 4-dichlorophenol from aqueous environments by heterogeneous catalytic ozonation using synthesized MgO nanoparticles[J]. Water Science and Technology,2017,76(11):3054-3068. doi: 10.2166/wst.2017.479
    [19] WU Z W, XU X C, JIANG H B, et al. Evaluation and optimization of a pilot-scale catalytic ozonation-persulfate oxidation integrated process for the pretreatment of dry-spun acrylic fiber wastewater[J]. RSC Advances,2017,7(70):44059-44067. doi: 10.1039/C7RA03287K
    [20] 许珊珊, 林存旺, 丁亚磊, 等.MgO/活性炭催化臭氧化降解有机物的作用机制[J]. 环境科学,2018,39(2):838-843. doi: 10.13227/j.hjkx.201704082

    XU S S, LIN C W, DING Y L, et al. Mechanism of MgO/GAC catalyzed ozonation of organic compounds[J]. Environmental Science,2018,39(2):838-843. doi: 10.13227/j.hjkx.201704082
    [21] HUANG Y X, CUI C C, ZHANG D F, et al. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon[J]. Chemosphere,2015,119:295-301. doi: 10.1016/j.chemosphere.2014.06.060
    [22] QI F, CHU W, XU B B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: the reaction and transformation[J]. Chemical Engineering Journal,2015,262:552-562. doi: 10.1016/j.cej.2014.09.068
    [23] WANG J L, BAI Z Y. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal,2017,312:79-98. doi: 10.1016/j.cej.2016.11.118
    [24] MANSAS C, MENDRET J, BROSILLON S, et al. Coupling catalytic ozonation and membrane separation: a review[J]. Separation and Purification Technology,2020,236:116221. doi: 10.1016/j.seppur.2019.116221
    [25] WANG B, XIONG X, REN H Y, et al. Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation[J]. RSC Advances,2017,7(69):43464-43473. doi: 10.1039/C7RA07553G
    [26] JIAO W Z, SHAO S J, YANG P Z, et al. Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology[J]. Frontiers of Chemical Science and Engineering,2021,15(5):1197-1205. doi: 10.1007/s11705-020-1998-6
    [27] NÖTHE T, FAHLENKAMP H, von SONNTAG C. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield[J]. Environmental Science & Technology,2009,43(15):5990-5995.
    [28] ZHANG S, QUAN X E, WANG D. Catalytic ozonation in arrayed zinc oxide nanotubes as highly efficient mini-column catalyst reactors (MCRs): augmentation of hydroxyl radical exposure[J]. Environmental Science & Technology,2018,52(15):8701-8711.
    [29] LI Y, WU L C, WANG Y, et al. Γ-Al2O3 doped with cerium to enhance electron transfer in catalytic ozonation of phenol[J]. Journal of Water Process Engineering,2020,36:101313. doi: 10.1016/j.jwpe.2020.101313
    [30] 任越中, 张嘉雯, 魏健, 等.铈负载改性天然沸石催化臭氧氧化水中青霉素G[J]. 环境工程技术学报,2019,9(1):28-35. doi: 10.3969/j.issn.1674-991X.2019.01.005

    REN Y Z, ZHANG J W, WEI J, et al. Catalytic ozonation of penicillin G in aqueous phase using modified natural zeolite supported cerium[J]. Journal of Environmental Engineering Technology,2019,9(1):28-35. □ doi: 10.3969/j.issn.1674-991X.2019.01.005
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  348
  • HTML全文浏览量:  134
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16

目录

    /

    返回文章
    返回