Research progress of industrial waste salt thermal treatment technologies
-
摘要:
随着我国经济快速发展,工业固体废物产量不断增多,特别是化工、制药、印染等行业产生的大量有害工业废盐对人体健康和自然环境安全造成了严重的威胁,同时也制约着企业的快速发展。在总结近年我国工业废盐处理处置方法的基础上,介绍了工业废盐的产量、特征和危害,以及工业废盐处理的常规方法,重点分析了当前工业废盐热处理技术,其中包括传统热处理技术和新型热处理技术。在传统热处理技术中,主要介绍了回转窑焚烧技术、流化床焚烧技术和液体喷射焚烧技术等。在新型热处理技术中,介绍了悬浮炉处理技术、分级碳化技术、熔融盐氧化技术、高温热管技术和微波吸收技术。对比分析了不同热处理技术处理效果和优缺点,系统梳理了我国工业废盐热处理技术的最新发展进程。此外,探讨了工业废盐热处理技术过程中有机污染物的消除机制,包括活性氧的产生机理以及有机污染物消除随温度的变化情况。最后,总结了在热处理过程中废盐所含的非金属元素(主要为N和S等)、重金属元素迁移转化规律,以及二噁英可能造成的二次污染问题。
Abstract:The rapid development of economy in China has resulted in the mass production of industrial solid wastes. Especially in the chemical, pharmaceutical, printing and dyeing industries, the large amount of hazardous industrial waste salts has caused a serious threat to human health and the safety of the natural environment and restricted the rapid development of enterprises as well. On the basis of summarizing the treatment and disposal methods of industrial waste salts in China in recent years, the output, characteristics and hazards of industrial waste salts were introduced, and the common methods for the treatment of industrial waste salt were reviewed. Current thermal treatment technologies used in disposal of industrial waste salts in China were analyzed, including both traditional and new-type thermal treatment technologies. The traditional thermal treatment technologies such as incineration in a rotary kiln, incineration in a fluidized bed, and liquid jet incineration and new-type thermal treatment technologies such as incineration in a suspended furnace, graded carbonization, molten salt oxidation, high-temperature thermal pipe technology and microwave absorption technology were investigated. The treatment effects, advantages and disadvantages of different thermal treatment technologies were compared and analyzed, and the latest development progress of industrial waste salt thermal treatment technologies in China was systematically combed. In addition, the elimination mechanisms of organic pollutants in the process of these technologies were discussed, including the generation mechanism of reactive oxygen and the change of organic pollutant elimination with temperature. Finally, the migration and transformation law of non-metal elements (mainly N and S, etc.) and heavy metal elements contained in waste salts in process of thermal treatment, and the possible secondary pollution caused by dioxins were summarized.
-
Key words:
- industrial waste salt /
- resource utilization /
- thermal treatment /
- secondary pollution /
- hazardous waste
-
图 1 回转窑焚烧炉示意[41]
Figure 1. Schematic diagram of rotary kiln incinerator
图 2 二级热风焚烧炉示意[46]
1—一级回转窑;2—二级回转窑;3—一级热风炉;4—二级热风炉;5、6—加料器;7—引风机;8—排湿机;9—进料口;10—排料口
Figure 2. Schematic diagram of secondary hot blast stove incinerator
图 3 鼓泡流化床焚烧炉示意[42]
Figure 3. Schematic diagram of bubbling fluidized bed incinerator
图 4 循环流化床焚烧炉示意[42]
Figure 4. Schematic diagram of circulating fluidized bed incinerator
图 5 立式液体喷射焚烧炉示意[42]
Figure 5. Schematic diagram of vertical liquid jet incinerator
图 6 卧式液体喷射焚烧炉示意[42]
Figure 6. Schematic diagram of horizontal liquid jet incinerator
图 7 悬浮炉处理工业废盐流程[65]
Figure 7. Flow chart for the treatment of industrial waste salt in a suspension furnace
图 8 工业废盐分级分解碳化无害化处理工艺流程[68]
Figure 8. Process flow chart of harmless treatment of industrial waste salts by hierarchical decomposition and carbonization
图 9 基于沸腾炉和高温热管炉的工业废盐处理装置示意[76]
1—沸腾炉;2—出料塔;3—余热回收腔;4—余热回收塔;5—重力热管;6—毛细热管;11—进料口,12—炉排;13—燃气管道;14—第一热风管道;15—第一引风装置;21—排气口;22—出料口;41—上端口;42—下端口;44—第二热风管道;45—第二引风装置
Figure 9. Schematic diagram of industrial waste salt treatment device based on boiling furnace and high temperature thermal pipe
图 10 基于微波吸收介质的工业废盐处理装置示意[79]
1—进口空气气流;2—空气进口管口;3—空气进口微波挡板;4—废盐和微波吸收介质的混合物;5—微波处理器;6—搅拌桨;7—搅拌轴;8—搅拌电机;9—微波发生器;10—气体出口管微波挡板;11—风机;12—尾气处理器;13—气体脱硫脱硝脱酸装置;14—废气出口
Figure 10. Schematic diagram of industrial waste salt treatment device based on microwave absorption medium
图 11 热处理技术处理工业废盐的一般流程[81]
Figure 11. General process of thermal treatment technologies for the treatment of industrial waste salt
图 12 金属离子的迁移过程[92]
Figure 12. Migration process of metal ions
图 13 不同炉温和停留时间SO2的生成特性[97]
Figure 13. Formation characteristics of sulfur dioxide at different furnace temperatures and residence times
表 1 常见焚烧炉类型及其优缺点[38]
Table 1. Advantages and disadvantages of common incinerators
焚烧炉类型 主要部件 优点 缺点 回转窑焚烧炉 回转窑+高温二燃室 适用范围广,操作简单,能够有效焚毁降解有机物等 投资成本高,易腐蚀,维护成本高等 流化床焚烧炉 流化床 燃烧效率高,气体污染物排放量少,构造简单,维护费用低等 对进样有要求,操作复杂,粉尘浓度高,运行不稳定 液体喷射焚烧炉 圆筒炉膛+燃烧器 有机物分解彻底,二次污染小 难以处理不能雾化的废盐以及固态半固态废物 -
[1] 王丽佳. 工业废盐的资源化及处置技术研究[D]. 杭州: 浙江工商大学, 2020. [2] 李强, 戴世金, 郑怡琳, 等.工业废盐中有机物脱除和资源化技术进展[J]. 环境工程,2019,37(12):200-206. doi: 10.13205/j.hjgc.201912035LI Q A, DAI S J, ZHENG Y L, et al. Discussion on treatment technology and resource recovery of hazardous waste salt containing organics[J]. Environmental Engineering,2019,37(12):200-206. doi: 10.13205/j.hjgc.201912035 [3] 李彦伟, 陈洪法, 张树立, 等.废盐处置工艺与设备解析[J]. 中国新技术新产品,2021(2):122-124. doi: 10.3969/j.issn.1673-9957.2021.02.038 [4] 周海云, 鲍业闯, 包健, 等.工业废盐处理处置现状研究进展[J]. 环境科技,2020,33(2):70-75. doi: 10.3969/j.issn.1674-4829.2020.02.015ZHOU H Y, BAO Y C, BAO J, et al. Research progress on status quo of industrial waste salt treatment and disposal[J]. Environmental Science and Technology,2020,33(2):70-75. doi: 10.3969/j.issn.1674-4829.2020.02.015 [5] 陈浩, 张枫, 王中正, 等.高盐废水处理技术研究进展[J]. 广州化工,2017,45(22):17-18. doi: 10.3969/j.issn.1001-9677.2017.22.008CHEN H, ZHANG F, WANG Z Z, et al. Study on treatment of wastewater with high salinity[J]. Guangzhou Chemical Industry,2017,45(22):17-18. doi: 10.3969/j.issn.1001-9677.2017.22.008 [6] PAN X L, DONG F S, WU X H, et al. Progress of the discovery, application, and control technologies of chemical pesticides in China[J]. Journal of Integrative Agriculture,2019,18(4):840-853. doi: 10.1016/S2095-3119(18)61929-X [7] 贺周初.化工生产中副产盐渣的处理及资源化利用[J]. 农药研究与应用,2008(4):16-18.HE Z C. The disposal and reclamation of byproduct salt residue in chemical production[J]. Agrochemicals Research & Application,2008(4):16-18. [8] 李迎堂, 王连旭, 张春法, 等.氯碱盐泥无害化处理工艺探讨[J]. 中国氯碱,2018(7):33-35. doi: 10.3969/j.issn.1009-1785.2018.07.011LI Y T, WANG L X, ZHANG C F, et al. Discussion on the harmlessly treatment technology of chlor-alkali salt mud[J]. China Chlor-Alkali,2018(7):33-35. doi: 10.3969/j.issn.1009-1785.2018.07.011 [9] 冯少将.粗甘油氯化生产二氯丙醇副产盐利用分析与研究[J]. 中国氯碱,2019(7):39-42. doi: 10.3969/j.issn.1009-1785.2019.07.015FENG S J. Analysis and study on utilization of by-product salt from chlorination of crude glycerin to produce dichloropropanol[J]. China Chlor-Alkali,2019(7):39-42. doi: 10.3969/j.issn.1009-1785.2019.07.015 [10] 生态环境部. 国家危险废物名录(2021年版)[A/OL]. (2020-11-27)[2021-07-07]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk02/202011/W020201130399742157558.pdf. [11] 卫生部, 国家标准化管理委员会. 生活饮用水卫生标准: GB 5749—2006[S]. 北京: 中国标准出版社, 2007. [12] 王玉珏. 硬水对人体健康存潜在危害[N]. 中国环境报, 2015-07-21(4). [13] 马金玉, 王文才, 罗千里, 等.黄大湖沉积物营养盐分布及来源解析[J]. 环境工程技术学报,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257MA J Y, WANG W C, LUO Q L, et al. Distribution and source analysis of nutrients in sediments of Huangda Lake[J]. Journal of Environmental Engineering Technology,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257 [14] 肖喆, 李文攀, 张靖天, 等.长潭水库生态问题诊断与对策研究[J]. 环境工程技术学报,2021,11(4):670-677. doi: 10.12153/j.issn.1674-991X.20200168XIAO Z, LI W P, ZHANG J T, et al. Diagnosis and countermeasures of eco-environmental problems in Changtan Reservoir[J]. Journal of Environmental Engineering Technology,2021,11(4):670-677. doi: 10.12153/j.issn.1674-991X.20200168 [15] 刘俊, 田学达, 王琳杰, 等.洞庭湖表层沉积物营养盐空间分布及来源解析[J]. 环境工程技术学报,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180LIU J, TIAN X D, WANG L J, et al. Spatial distribution and source analysis of surface sediment nutrients in Lake Dongting[J]. Journal of Environmental Engineering Technology,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180 [16] 郭举.二甲基亚砜工业废盐中亚硝酸钠的脱除研究[J]. 无机盐工业,2016,48(10):54-55.GUO J. Study on removal of sodium nitrite from DMSO industrial waste residue[J]. Inorganic Chemicals Industry,2016,48(10):54-55. [17] 潘文丽.印染助剂的环境影响与发展方向[J]. 染整技术,2016,38(3):22-25. doi: 10.3969/j.issn.1005-9350.2016.03.006PAN W L. The environmental influence and development of textile auxiliary[J]. Textile Dyeing and Finishing Journal,2016,38(3):22-25. doi: 10.3969/j.issn.1005-9350.2016.03.006 [18] 李若征, 樊兆世, 滕济林, 等.煤化工废水制取结晶盐标准探析[J]. 环境影响评价,2017,39(2):14-17.LI R Z, FAN Z S, TENG J L, et al. Discussion on the standard of purified crystallization salt from wastewater in coal chemical industry[J]. Environmental Impact Assessment,2017,39(2):14-17. [19] 田颖, 滕济林, 李若征, 等.煤化工杂盐脱除有机物回收无机盐的实验研究[J]. 化学工程,2018,46(6):68-72. doi: 10.3969/j.issn.1005-9954.2018.06.014TIAN Y, TENG J L, LI R Z, et al. Recycling of inorganic salts from coal chemical industry containing mixed salts by removing organic matters[J]. Chemical Engineering (China),2018,46(6):68-72. doi: 10.3969/j.issn.1005-9954.2018.06.014 [20] 周莉菊, 冯家满, 赵由才.浅谈氯碱装置区域布局及盐泥的处理方法[J]. 氯碱工业,2006,42(6):3-6. doi: 10.3969/j.issn.1008-133X.2006.06.002 [21] 王希尹, 杨延梅, 杨玉飞, 等.碳酸锶生产中锶盐废渣的危险特性分析[J]. 环境工程技术学报,2018,8(3):297-301. doi: 10.3969/j.issn.1674-991X.2018.03.039WANG X Y, YANG Y M, YANG Y F, et al. Analysis of hazardous characteristics of strontium salt residue in the production of strontium carbonate[J]. Journal of Environmental Engineering Technology,2018,8(3):297-301. doi: 10.3969/j.issn.1674-991X.2018.03.039 [22] 李迅, 姜海英.含钚放射性废盐干法处理技术研究进展[J]. 核化学与放射化学,2020,42(4):205-213.LI X, JIANG H Y. Research progress on dry processing technology of radioactive waste salts containing plutonium[J]. Journal of Nuclear and Radiochemistry,2020,42(4):205-213. [23] 王昱, 王浩, 周海云.化工废盐处理处置技术与政策的发展研究[J]. 污染防治技术,2017,30(4):11-15.WANG Y, WANG H, ZHOU H Y. Study on the technology and policy of chemical waste salt treatment and disposal[J]. Pollution Control Technology,2017,30(4):11-15. [24] 樊锐, 刘玉坤.工业废盐资源化处置现状及分析[J]. 环境与发展,2020,32(8):52-53.FAN R, LIU Y K. Current situation and analysis of industrial waste salt resource disposal[J]. Environment and Development,2020,32(8):52-53. [25] 李小燕.全国危险废物填埋污染控制标准与废盐杂盐处理处置技术研讨共识 无害化管理 资源化利用[J]. 城乡建设,2018(22):44-45. doi: 10.3969/j.issn.1002-8455.2018.22.014 [26] 张家庆.氨基苯醚等产品副产工业废盐精制工艺研究[J]. 化工管理,2020(23):185-186. doi: 10.3969/j.issn.1008-4800.2020.23.091 [27] 郭小玲.工业废盐处理综述[J]. 江西化工,2021,37(1):1-3. doi: 10.3969/j.issn.1008-3103.2021.01.001GUO X L. Review on treatment of industrial waste salt[J]. Jiangxi Chemical Industry,2021,37(1):1-3. doi: 10.3969/j.issn.1008-3103.2021.01.001 [28] PANAGOPOULOS A, HARALAMBOUS K J, LOIZIDOU M. Desalination brine disposal methods and treatment technologies: a review[J]. Science of the Total Environment,2019,693:133545. doi: 10.1016/j.scitotenv.2019.07.351 [29] 张研, 崔伟超, 刘红雨.高温热解法净化工业废盐的研究[J]. 天津化工,2021,35(1):60-62. doi: 10.3969/j.issn.1008-1267.2021.01.020ZHANG Y, CUI W C, LIU H Y. Study on purification of industrial waste salt by high temperature pyrolysis[J]. Tianjin Chemical Industry,2021,35(1):60-62. doi: 10.3969/j.issn.1008-1267.2021.01.020 [30] 周国娥, 钟红梅, 梁美东.水合肼副产盐渣制小苏打新工艺研究[J]. 无机盐工业,2017,49(6):53-55.ZHOU G E, ZHONG H M, LIANG M D. Research on new production process of baking soda with by-produced salt waste in hydrazine hydrate production[J]. Inorganic Chemicals Industry,2017,49(6):53-55. [31] 周国娥.水合肼副产盐渣回收利用技术应用进展[J]. 山东化工,2013,42(12):72-74. [32] 董志凯.当代中国盐业产销的变迁[J]. 中国经济史研究,2006(3):11-19. doi: 10.3969/j.issn.1002-8005.2006.03.002 [33] 生态环境部, 国家市场监督管理总局. 危险废物填埋污染控制标准: GB 18598—2019[S]. 北京: 中国环境出版社, 2019. [34] 李唯实, 黄泽春, 雷国元, 等.典型农药废盐热处理过程动力学特征[J]. 中国环境科学,2018,38(7):2691-2698. doi: 10.3969/j.issn.1000-6923.2018.07.040LI W S, HUANG Z C, LEI G Y, et al. Thermal degradation kinetic property of waste salt during thermal treatment[J]. China Environmental Science,2018,38(7):2691-2698. doi: 10.3969/j.issn.1000-6923.2018.07.040 [35] 王利超, 王志良, 马堂文, 等.模拟氯化钠盐渣的高温处理[J]. 化工环保,2014,34(5):419-422. doi: 10.3969/j.issn.1006-1878.2014.05.004WANG L C, WANG Z L, MA T W, et al. High-temperature treatment of simulated sodium chloride salt slag[J]. Environmental Protection of Chemical Industry,2014,34(5):419-422. doi: 10.3969/j.issn.1006-1878.2014.05.004 [36] 高若峰. 基于流化床的工业废盐有机物脱除的热处理机理研究[D]. 杭州: 浙江大学, 2020. [37] 古家越.美国的溶剂废液处理技术[J]. 国外环境科学技术,1987,12(1):67-71. [38] 吴占松, 马润田, 汪展文. 流态化技术基础及应用[M]. 北京: 化学工业出版社, 2006: 71-75. [39] 钱惠国.回转窑式废弃物焚烧炉的设计[J]. 动力工程,2002,22(3):1819-1823.QIAN H G. Design of rubbish-burning furnace in revolving tubular kiln-model[J]. Power Engineering,2002,22(3):1819-1823. [40] 吴承坚, 邓华龙, 杜静.有机废物的水泥回转窑处理技术[J]. 上海环境科学,1991,10(10):42-43. [41] 赵波, 满毅.含盐废液焚烧处理技术的研究进展[J]. 工业炉,2020,42(5):56-59. doi: 10.3969/j.issn.1001-6988.2020.05.016ZHAO B, MAN Y. Research progress on incineration technology of salty waste liquid[J]. Industrial Furnace,2020,42(5):56-59. doi: 10.3969/j.issn.1001-6988.2020.05.016 [42] 别如山, 杨励丹, 李季, 等.国内外有机废液的焚烧处理技术[J]. 化工环保,1999,19(3):148-154. doi: 10.3969/j.issn.1006-1878.1999.03.005BIE R S, YANG L D, LI J, et al. Incineration technology for waste organic liquor at home and abroad[J]. Environmental Protection of Chemical Industry,1999,19(3):148-154. doi: 10.3969/j.issn.1006-1878.1999.03.005 [43] 占华生, 聂连山, 李佳东, 等.回转窑危废焚烧炉耐火材料的应用现状及设计选材优化[J]. 耐火材料,2021,55(2):151-154. doi: 10.3969/j.issn.1001-1935.2021.02.014ZHAN H S, NIE L S, LI J D, et al. Application status and material selection optimization of refractory materials for hazardous waste rotary incinerators[J]. Refractories,2021,55(2):151-154. doi: 10.3969/j.issn.1001-1935.2021.02.014 [44] 徐红彬, 张笛, 孙晓岩, 等. 一种洗盐结合原位氧化的含有机物工业废盐精制处理方法: CN110451531A[P]. 2019-11-15. [45] 毛永生, 李留德, 吴德生. 一种化工工业废盐精制装置及工艺: CN104671756A[P]. 2015-02-13. [46] 韩正昌, 孙在臣, 张良, 等. 一种用于废盐精制的多热热脱附工艺及装备: CN106424112A[P]. 2016-11-03. [47] 孙彩虹, 胡大春, 张照飞, 等. 一种热流体分级气提处理工业废盐中有机物的系统和方法: CN108408744B[P]. 2020-11-03. [48] 罗劲松, 何睿, 杨兆标.回转窑焚烧处理有机废液[J]. 云南化工,2015,42(4):52-54. doi: 10.3969/j.issn.1004-275X.2015.04.015LUO J S, HE R, YANG Z B. Discussion rotary kiln incineration of organic waste technology[J]. Yunnan Chemical Technology,2015,42(4):52-54. doi: 10.3969/j.issn.1004-275X.2015.04.015 [49] 刘维彤. 多性态废弃物分级混合回转焚烧的理论与实验研究[D]. 青岛: 青岛科技大学, 2018. [50] 邵军. 一种废弃工业盐有机物的分解工艺: CN104014578A[P]. 2014-09-03. [51] 李绪宾. 工业废盐流化处理的工艺研究[D]. 东营: 中国石油大学(华东), 2017. [52] 陈宇明. 含盐高浓度有机废液流化床焚烧灰渣粘结特性研究[D]. 杭州: 浙江大学, 2017. [53] 吕宏俊. 流化床焚烧处理高浓度有机废液的结焦结渣特性研究[D]. 杭州: 浙江大学, 2005. [54] 汪向阳. 含盐苯胺废液流化床焚烧及高温腐蚀的研究[D]. 合肥: 合肥工业大学, 2015. [55] 姜海超, 申银山, 陈晓飞, 等.含氰工业废盐中杂质的高温氧化脱除实验研究[J]. 无机盐工业,2020,52(2):62-64. doi: 10.11962/1006-4990.2019-0136JIANG H C, SHEN Y S, CHEN X F, et al. Experimental study on high temperature oxidation removal of impurities in cyanide-contained industrial waste salts[J]. Inorganic Chemicals Industry,2020,52(2):62-64. doi: 10.11962/1006-4990.2019-0136 [56] 潘华丰, 刘兴高. 有机废液焚烧炉控制系统设计[J]. 控制工程, 2009, 16(增刊2): 53-56.PAN H F, LIU X G. Organic waste incinerator control system[J]. Control Engineering of China, 2009, 16(Suppl 2): 53-56. [57] 池涌, 王波, 严建华, 等.有机危险废液焚烧处理技术[J]. 电站系统工程,2006,22(6):8-10. doi: 10.3969/j.issn.1005-006X.2006.06.003CHI Y, WANG B, YAN J H, et al. Liquid hazardous wastes incineration[J]. Power System Engineering,2006,22(6):8-10. doi: 10.3969/j.issn.1005-006X.2006.06.003 [58] 李书龙. 基于三段焚烧炉的工业废盐综合处理装置及其使用方法: CN103693658A[P]. 2013-12-26. [59] 邓天龙, 李珑, 余晓平, 等. 一种含锂废盐煅烧回收方法: CN106495190B[P]. 2018-03-09. [60] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 碳酸锂: GB/T 11075—2013[S]. 北京: 中国标准出版社, 2014. [61] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工业盐: GB/T 5462—2015[S]. 北京: 中国标准出版社, 2016. [62] 陈蕾, 陈正. 医药废盐的无害化处理方法: CN108164138B[P]. 2020-01-07. [63] 吴汕, 伍爽, 唐晓飞.工业废盐中有机物的深度去除方法[J]. 化工管理,2020(36):140-142. doi: 10.3969/j.issn.1008-4800.2020.36.067 [64] 常鹰, 周志文, 谌援, 等. 一种化工废盐渣高温热解无害化处理装置: CN109882853B[P]. 2020-10-13. [65] 常鹰, 谌援, 魏志顺, 等. 一种用悬浮焚烧技术高温热解无害化处理工业废盐渣的方法: CN109882854B[P]. 2020-10-13. [66] 余传林, 王祺, 关小川, 等.一体化悬浮焚烧处理高浓度含盐有机废液锅炉技术[J]. 节能技术,2020,38(3):247-250. doi: 10.3969/j.issn.1002-6339.2020.03.012YU C L, WANG Q, GUAN X C, et al. Integrated suspension incineration technology for high concentration organic wastewater containing salt[J]. Energy Conservation Technology,2020,38(3):247-250. doi: 10.3969/j.issn.1002-6339.2020.03.012 [67] 王鸣彦, 邓庆跃, 陶万生, 等. 一种工业废盐碳化处理方法: CN106475398A[P]. 2016-10-12. [68] 张继宇. 一种工业废盐分级分解碳化无害化处理的工艺及设备: CN106914474B[P]. 2019-06-21. [69] 张以飞.高温炭化法处理工业废盐工程方案研究[J]. 环境与发展,2020,32(4):48-49.ZHANG Y F. Study on the project scheme of high-temperature carbonization for industrial waste salt treatment[J]. Environment and Development,2020,32(4):48-49. [70] 胡卫平, 贺周初, 朱文新, 等.农药副产废盐渣的无害化处理及利用[J]. 精细化工中间体,2013,43(3):48-50.HU W P, HE Z C, ZHU W X, et al. Innocuous treatment and recycling of waste salts formed in pesticides production[J]. Fine Chemical Intermediates,2013,43(3):48-50. [71] YAO Z T, LI J H, ZHAO X Y. Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes[J]. Chemosphere,2011,84(9):1167-1174. doi: 10.1016/j.chemosphere.2011.05.061 [72] YANG H C, LEE M W, YOON I H, et al. Scale-up and optimization of a two-stage molten salt oxidation reactor system for the treatment of cation exchange resins[J]. Chemical Engineering Research and Design,2013,91(4):703-712. doi: 10.1016/j.cherd.2013.02.014 [73] 吴军伟, 陶懿玲. 工业废盐渣无害化处理方法: CN108954344A[P]. 2018-07-29. [74] 周丹丹, 倪江中, 王闻伟. 一种利用化工废盐制备熔剂的方法: CN110227702B[P]. 2021-03-23. [75] 李书龙. 基于高温热管的工业废盐综合处理装置: CN103627414A[P]. 2014-03-12. [76] 李书龙. 基于沸腾炉和高温热管换热的工业废盐加工装置: CN203615344U[P]. 2014-05-28. [77] 冯春全, 李政, 邱郴. 一种低温催化热解处理有机废盐的方法及应用: CN111422886B[P]. 2020-11-24. [78] 项贤富, 李康. 一种工业废盐渣无害化处理方法: CN104344407B[P]. 2016-10-12. [79] 刘海弟, 岳仁亮, 李伟曼, 等. 一种工业废盐的处理方法: CN106801874B[P]. 2019-05-07. [80] 曾青云, 薛丽燕, 曾繁钢, 等.氨氮废水处理技术的研究现状[J]. 有色金属科学与工程,2018,9(4):83-88.ZENG Q Y, XUE L Y, ZENG F G, et al. Research progress of treatment technology for ammonia nitrogen wastewater[J]. Nonferrous Metals Science and Engineering,2018,9(4):83-88. [81] 马静颖. 含盐高浓度有机废液的蒸发结晶及流化床焚烧处理研究[D]. 杭州: 浙江大学, 2006. [82] GRIFFITHS T R, VOLKOVICH V A, ANGHEL E M, et al. Molten salt oxidation for the efficient destruction of radioactive, hazardous chemical, medical waste and munitions[C]//24th International Conference on Incineration and Thermal Treatment Technologies, 2005. [83] VOLKOVICH V A, GRIFFITHS T R, FRAY D J, et al. A new method for determining oxygen solubility in molten carbonates and carbonate-chloride mixtures using the oxidation of UO2 to uranate reaction[J]. Journal of Nuclear Materials,2000,282(2/3):152-158. [84] 苏梦, 祝建中, 朱晓强, 等.二氰蒽醌农药废盐热处理特性[J]. 科学技术与工程,2019,19(24):423-429. doi: 10.3969/j.issn.1671-1815.2019.24.066SU M, ZHU J Z, ZHU X Q, et al. Thermal treatment characteristics of pesticide waste salts of dithianon[J]. Science Technology and Engineering,2019,19(24):423-429. doi: 10.3969/j.issn.1671-1815.2019.24.066 [85] 董俊佳, 刘志英, 王雷, 等.医药类废盐渣的燃烧/热解特性及动力学研究[J]. 环境污染与防治,2019,41(9):1070-1075.DONG J J, LIU Z Y, WANG L, et al. Combustion/pyrolysis characteristics and kinetics of pharmaceutical waste salt residues[J]. Environmental Pollution & Control,2019,41(9):1070-1075. [86] 李唯实, 徐亚, 雷国元, 等.典型农药废盐热处理特性及适用性[J]. 环境科学研究,2018,31(10):1779-1786.LI W S, XU Y, LEI G Y, et al. Thermal treatment characteristics and adaptability of typical pesticide waste salts[J]. Research of Environmental Sciences,2018,31(10):1779-1786. [87] 林诚乾. 含盐含卤素固体废弃物熔融盐处置研究[D]. 杭州: 浙江大学, 2018. [88] OLESZEK S, GRABDA M, SHIBATA E, et al. Distribution of copper, silver and gold during thermal treatment with brominated flame retardants[J]. Waste Management,2013,33(9):1835-1842. doi: 10.1016/j.wasman.2013.05.009 [89] 陈杰, 杨庆辉, 安兵涛.焚烧含盐废液锅炉的飞灰特性研究[J]. 工业锅炉,2021(1):15-19.CHEN J E, YANG Q H, AN B T. Study on the fly ash characteristics of the salty waste liquid-fired boiler[J]. Industrial Boilers,2021(1):15-19. [90] ZHANG H, HE P J, SHAO L M. Fate of heavy metals during municipal solid waste incineration in Shanghai[J]. Journal of Hazardous Materials,2008,156(1/2/3):365-373. [91] 陈怀俊, 牛芳, 王乃继.垃圾焚烧处置中二噁英和重金属污染的控制技术进展[J]. 洁净煤技术,2021,27(6):59-75. [92] 陆胜勇, 池涌, 严建华, 等.垃圾焚烧中重金属污染物的迁移和分布规律[J]. 热力发电,2003,32(3):24-28. doi: 10.3969/j.issn.1002-3364.2003.03.008LU S Y, CHI Y, YAN J H, et al. Transfer and distribution mechanisms of heavy metal pollutants in the process of MSW incineration[J]. Thermal Power Generation,2003,32(3):24-28. doi: 10.3969/j.issn.1002-3364.2003.03.008 [93] 罗江泽, 沈伯雄, 石其其.燃烧过程中碱/碱土金属对重金属迁移转化影响的研究进展[J]. 燃料化学学报,2020,48(11):1318-1326. doi: 10.3969/j.issn.0253-2409.2020.11.005LUO J Z, SHEN B X, SHI Q Q. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion[J]. Journal of Fuel Chemistry and Technology,2020,48(11):1318-1326. doi: 10.3969/j.issn.0253-2409.2020.11.005 [94] 曹玉春. 流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究[D]. 杭州: 浙江大学, 2005. [95] RAVIKRISHNA R V, LAURENDEAU N M. Laser-induced fluorescence measurements and modeling of nitric oxide in counterflow partially premixed flames[J]. Combustion and Flame,2000,1224(4):474-482. [96] 李伟, 耿瑞光, 金大桥.锅炉硫氧化物生成机理及控制技术研究[J]. 黑龙江工程学院学报,2019,33(6):6-9.LI W, GENG R G, JIN D Q. Formation mechanism and control technologies of boiler NOx[J]. Journal of Heilongjiang Institute of Technology,2019,33(6):6-9. [97] 岑可法, 姚强, 骆仲泱, 等. 燃烧理论与污染控制[M]. 2版. 北京: 机械工业出版社, 2019. [98] 李嘉懿, 张海涛, 周吉峙, 等.脱硫废水减温烟气对飞灰中重金属稳定性的影响研究[J]. 环境科学与管理,2020,45(12):51-55. doi: 10.3969/j.issn.1673-1212.2020.12.015LI J Y, ZHANG H T, ZHOU J Z, et al. Effectiveness of desulfurization wastewater reducing flue gas temperature on stability of heavy metals in fly ash[J]. Environmental Science and Management,2020,45(12):51-55. doi: 10.3969/j.issn.1673-1212.2020.12.015 [99] 谢明, 李翔宇.危废焚烧中的二噁英生成机制及控制技术研究[J]. 资源节约与环保,2020(7):168-170. [100] 罗国衡.关于生活垃圾焚烧发电中二噁英控制技术研究[J]. 环境与发展,2017,29(6):110. doi: 10.16647/j.cnki.cn15-1369/X.2017.06.070LUO G H. Research on technology to control dioxin in incinerating domestic waste for electricity generation[J]. Environment and Development,2017,29(6):110. □ doi: 10.16647/j.cnki.cn15-1369/X.2017.06.070