Analysis of groundwater pollution characteristics and pollutant migration law of a decommissioned chemical plant site in Southwest China
-
摘要:
针对某退役化工厂场地受有机物污染的地下水含水层,开展地下水污染特征调查,通过风险评价模型、DRASTIC模型分别对研究区进行人体健康风险及地下水脆弱性评价,构建污染物地下水迁移扩散模型,进一步剖析典型污染物迁移扩散的影响因素及动力学模式。结果表明:研究区地下水受1,2-二氯乙烷、苯、三氯甲烷的污染,1,2-二氯乙烷的总致癌风险为4.00×10−6,超过人体健康风险可接受水平,主要暴露途径为吸入室内空气中来自地下水的气态污染物;研究区地下水脆弱性指数为4.912~5.305,整体处于中等脆弱性水平,地下水系统抵御污染能力较强,地下水埋深、净补给量和含水层厚度是影响地下水脆弱性的主要因素;1,2-二氯乙烷迁移扩散受地下水对流作用、含水介质吸附阻滞作用、生物化学作用共同影响,地下水对流作用是其迁移扩散的主要动力,含水介质吸附阻滞作用及生物化学作用对于其分布范围影响显著。
Abstract:Taking a decommissioned chemical site as the research object, in view of the organically polluted groundwater aquifer in it, the groundwater pollution characteristics were investigated. The risk assessment model and DRASTIC model were applied to evaluate the human health risk and groundwater vulnerability in the study area, respectively, and the groundwater migration and diffusion model of typical pollutants was constructed to further analyze the influencing factors and dynamic modes of the migration and diffusion of typical pollutants. The results showed that the groundwater in the study area was polluted by 1,2-dichloroethane, benzene and trichloromethane. The total carcinogenic risk of 1,2-dichloroethane was 4.00×10−6, exceeding the acceptable level of human health risk, which was mainly caused by inhaling gaseous pollutants from groundwater in indoor air. The groundwater vulnerability index of the study area ranged from 4.912 to 5.305, which was at the medium vulnerability level as a whole. The groundwater system had a strong ability to resist pollution. The groundwater depth, net recharge and aquifer thickness were the main factors affecting groundwater vulnerability. The migration and diffusion of 1,2-dichloroethane were jointly affected by the convection of groundwater, the adsorption and retardation of aqueous media, and biochemical effects. Groundwater convection was the main driving force for its migration and diffusion. Moreover, the adsorption and retardation of aqueous media and biochemical effects had significant effects on the distribution range of 1,2-dichloroethane.
-
表 1 污染物毒性参数及暴露参数[12]
Table 1. Toxicity parameters and exposure parameters of pollutants
污染物 SF/
〔(kg·d)/mg〕RfD/
〔mg/(kg·d)〕VFgwoa/
(L/m3)VFgwia/
(L/m3)1,2-二氯乙烷 1.11×10−1 1.64×10−3 7.61×10−7 9.39×10−5 苯 3.32×10−2 7.04×10−3 3.16×10−6 4.31×10−4 氯仿 9.80×10−2 2.30×10−2 1.87×10−6 2.49×10−4 表 2 DRASTIC模型指标体系分级和权重
Table 2. Grading and weight of DRASTIC model index system
评分 指标 D/m R/mm A/m S T/% I C/(m/d) 1 >30 0~51 >50 非胀缩性黏土 >10 黏土 0~4 2 25~30 51~71 45~50 黏质壤土(黏土) 9~10 亚黏土 4~12 3 20~25 71~92 40~45 粉质壤土 8~9 亚砂土 12~20 4 15~20 92~117 35~40 壤土 7~8 粉砂 20~30 5 10~15 117~147 30~35 砂质壤土(砂土) 6~7 粉细砂 30~35 6 8~10 147~178 25~30 胀缩或凝聚性黏土 5~6 细砂 35~40 7 6~8 178~216 20~25 粉砂、细砂 4~5 中砂 40~60 8 4~6 216~235 15~20 砾石/中砂、粗砂 3~4 粗砂 60~80 9 2~4 235~254 10~15 卵砾石 2~3 砂砾石 80~100 10 <2 >254 <10 薄层或缺失 <2 卵砾石 >100 权重 5 4 3 2 1 5 3 标准归一化权重 0.217 0.174 0.131 0.087 0.043 0.217 0.131 表 3 地下水样品检测结果
Table 3. Test results of groundwater samples
污染物 评价标准1)/(μg/L) 最大值/(μg/L) 最小值/(μg/L) 平均值/(μg/L) 标准偏差 检出率/% 超标率/% 最大超标倍数/倍 1,2-二氯乙烷 40 5074.7 ND 693.0 1334.8 73.1 53.8 125.9 苯 120 287.5 ND 21.6 61.1 23.1 3.8 1.4 三氯甲烷 300 380 ND 27.7 84.9 19.2 11.5 0.27 1,1,2-三氯乙烷 60 37.1 ND 6.1 13.8 19.2 0 0 1,2-二氯丙烷 60 19.8 ND 5.6 13.0 26.9 0 0 注:ND表示未检出。1)为GB/T 14848—2017的Ⅳ类水质标准。 表 4 健康风险评价结果
Table 4. Results of health risk assessment
健康风险 暴露途径 1,2-二氯乙烷 苯 三氯甲烷 致癌风险 CRiov3 1.08×10−8 7.59×10−10 1.75×10−9 CRiiv2 3.99×10−6 3.11×10−7 7.00×10−7 CRn 4.00×10−6 3.12×10−7 7.02×10−7 危害商 HQiov3 6.67×10−4 3.66×10−5 8.75×10−6 HQiiv2 2.47×10−1 1.50×10−2 3.51×10−3 HIn 2.48×10−1 1.50×10−2 3.51×10−3 -
[1] 倪碧珩, 施维林, 陈洁, 等.某电镀厂地块重金属污染特征与健康风险空间分布评价[J]. 环境工程技术学报,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142NI B Q, SHI W L CHEN J, et al. Pollution analysis and spatial distribution of health risk of heavy metals in the electroplating plant[J]. Journal of Environmental Engineering Technology,2022,12(3):878-885. doi: 10.12153/j.issn.1674-991X.20210142 [2] 吕占禄, 张金良, 邹天森, 等.燃煤电厂周边土壤重金属污染特征及评价[J]. 环境工程技术学报,2019,9(6):720-731. doi: 10.12153/j.issn.1674-991X.2019.05.240LÜ Z L, ZHANG J L, ZOU T S, et al. Characteristics and evaluation of heavy metal pollution in soil around coal-fired power plants[J]. Journal of Environmental Engineering Technology,2019,9(6):720-731. doi: 10.12153/j.issn.1674-991X.2019.05.240 [3] 赵利刚, 蒲生彦, 杨金艳, 等.某铬渣堆场周边土壤地下水Cr6+污染特征研究[J]. 环境工程,2015,33(2):117-121.ZHAO L G, PU S Y, YANG J Y, et al. The Cr(Ⅵ) pollution characteristics of groundwater and soil in the surroundings of a chromium slag site[J]. Environmental Engineering,2015,33(2):117-121. [4] 马建锋, 李彦武, 史聆聆, 等.中原经济区平原区地下水脆弱性评价[J]. 环境工程,2016,34(8):149-153,148. doi: 10.13205/j.hjgc.201608031MA J F, LI Y W, SHI L L, et al. Groundwater vulnerability assessment in central Plains economic region[J]. Environmental Engineering,2016,34(8):149-153,148. doi: 10.13205/j.hjgc.201608031 [5] MALLIK S, BHOWMIK T, MISHRA U, et al. Local scale groundwater vulnerability assessment with an improved DRASTIC model[J]. Natural Resources Research,2021,30(3):2145-2160. doi: 10.1007/s11053-021-09839-z [6] HU X J, MA C M, QI H H, et al. Groundwater vulnerability assessment using the GALDIT model and the improved DRASTIC model: a case in Weibei Plain, China[J]. Environmental Science and Pollution Research,2018,25(32):32524-32539. doi: 10.1007/s11356-018-3196-3 [7] 吴建强, 王敏, 陈宇, 等.平原河网地区地下水脆弱性评价体系构建及应用[J]. 生态环境学报,2017,26(11):1821-1828. doi: 10.16258/j.cnki.1674-5906.2017.11.001WU J Q, WANG M, CHEN Y, et al. Construction and application of groundwater vulnerability assessment method system in plain river network area[J]. Ecology and Environmental Sciences,2017,26(11):1821-1828. doi: 10.16258/j.cnki.1674-5906.2017.11.001 [8] 奚旭, 孙才志, 吴彤, 等.下辽河平原地下水脆弱性的时空演变[J]. 生态学报,2016,36(10):3074-3083.XI X, SUN C Z, WU T, et al. Spatial-temporal evolution of groundwater vulnerability in the lower reaches of the Liaohe River Plain[J]. Acta Ecologica Sinica,2016,36(10):3074-3083. [9] 徐颖, 李梦雪, 董心月, 等.氟化工园区及周边地下水健康风险及脆弱性评价[J]. 环境科学学报,2020,40(6):2300-2310. doi: 10.13671/j.hjkxxb.2020.0023XU Y, LI M X, DONG X Y, et al. Health risk and vulnerability assessment of groundwater in fluorine chemical industrial and surrounding areas[J]. Acta Scientiae Circumstantiae,2020,40(6):2300-2310. doi: 10.13671/j.hjkxxb.2020.0023 [10] MAMAT A, ZHANG Z Y, MAMAT Z, et al. Pollution assessment and health risk evaluation of eight (metalloid) heavy metals in farmland soil of 146 cities in China[J]. Environmental Geochemistry and Health,2020,42(11):3949-3963. doi: 10.1007/s10653-020-00634-y [11] ZHANG Z Y, MAMAT A, SIMAYI Z. Pollution assessment and health risks evaluation of (metalloid) heavy metals in urban street dust of 58 cities in China[J]. Environmental Science and Pollution Research,2019,26(1):126-140. doi: 10.1007/s11356-018-3555-0 [12] 生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019. [13] 于林弘, 陶志斌, 扈胜涛, 等.DRASTIC模型在地下水脆弱性评价中的应用[J]. 人民黄河,2020,42(增刊1):45-46. [14] AMIRI F, TABATABAIE T, ENTEZARI M. GIS-based DRASTIC and modified DRASTIC techniques for assessing groundwater vulnerability to pollution in Torghabeh-Shandiz of Khorasan County, Iran[J]. Arabian Journal of Geosciences,2020,13(12):1-16. [15] LAD S, AYACHIT R, KADAM A, et al. Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and Frequency ratio method[J]. Modeling Earth Systems and Environment,2019,5(2):543-553. doi: 10.1007/s40808-018-0545-7 [16] JHARIYA D C, KUMAR T, PANDEY H K, et al. Assessment of groundwater vulnerability to pollution by modified DRASTIC model and analytic hierarchy process[J]. Environmental Earth Sciences,2019,78(20):1-20. [17] 朱飞, 熊丽君, 吴建强, 等.基于改进DRASTIC模型的平原河网地区地下水脆弱性评价[J]. 环境科学与技术,2020,43(2):187-193. doi: 10.19672/j.cnki.1003-6504.2020.02.028ZHU F, XIONG L J, WU J Q, et al. Groundwater vulnerability assessment in plain river network areas based on the improved DRASTIC model[J]. Environmental Science & Technology,2020,43(2):187-193. doi: 10.19672/j.cnki.1003-6504.2020.02.028 [18] FETTER C W.污染水文地质学[M]. 周念清, 黄勇, 译. 北京: 高等教育出版社, 2011: 44-49. [19] 张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011: 33-34. [20] MOJID M A, VEREECKEN H. On the physical meaning of retardation factor and velocity of a nonlinearly sorbing solute[J]. Journal of Hydrology,2005,302(1/2/3/4):127-136. [21] 徐铁兵, 刘思言, 阎秀兰, 等.某化肥厂污染场地土壤和地下水中氨氮分布特征及其非致癌风险评估[J]. 环境污染与防治,2021,43(2):211-216. doi: 10.15985/j.cnki.1001-3865.2021.02.014XU T B, LIU S Y, YAN X L, et al. Distribution characteristics and non-carcinogenic risk assessment of ammonia nitrogen in the soil and groundwater polluted by a chemical fertilizer contaminated site[J]. Environmental Pollution & Control,2021,43(2):211-216. doi: 10.15985/j.cnki.1001-3865.2021.02.014 [22] 姜林, 钟茂生, 贾晓洋, 等.基于地下水暴露途径的健康风险评价及修复案例研究[J]. 环境科学,2012,33(10):3329-3335. doi: 10.13227/j.hjkx.2012.10.023JIANG L, ZHONG M S, JIA X Y, et al. Case study on groundwater health risk assessment and remediation strategy based on exposure pathway[J]. Environmental Science,2012,33(10):3329-3335. doi: 10.13227/j.hjkx.2012.10.023 [23] 刘丽丽, 邓一荣, 林挺, 等.粤港澳大湾区典型化工地块地下水分层调查与风险评估[J]. 环境污染与防治,2021,43(1):67-72. doi: 10.15985/j.cnki.1001-3865.2021.01.013LIU L L, DENG Y R, LIN T, et al. Multi-layer sampling and health risk assessment of groundwater for a typical chemical contaminated site in Guangdong-Hong Kong-Macao Greater Bay Area[J]. Environmental Pollution & Control,2021,43(1):67-72. doi: 10.15985/j.cnki.1001-3865.2021.01.013 [24] FAN C, WANG G S, CHEN Y C, et al. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan[J]. Science of the Total Environment,2009,407(7):2165-2174. doi: 10.1016/j.scitotenv.2008.12.015 [25] 谢湉, 卢桂宁, 党志, 等.水动力控制强化碱活化过硫酸盐原位修复1, 2-二氯乙烷污染地下水[J]. 环境工程学报,2021,15(5):1577-1587. doi: 10.12030/j.cjee.202012156XIE T, LU G N, DANG Z, et al. Hydrodynamic control-enhanced alkali activated persulfate for in situ remediation of 1, 2-dichloroethane contaminated groundwater[J]. Chinese Journal of Environmental Engineering,2021,15(5):1577-1587. doi: 10.12030/j.cjee.202012156 [26] 钱永. 1, 2, 3-三氯丙烷在地下水中的环境行为研究: 以某氯代烃有机污染场地为例[D]. 北京: 中国地质大学(北京), 2016: 58-59. [27] 何江涛, 程东会, 韩冰, 等.浅层地下水氯代烃污染天然衰减速率的估算[J]. 地学前缘,2006,13(1):140-144. doi: 10.3321/j.issn:1005-2321.2006.01.018HE J T, CHENG D H, HAN B, et al. Estimation of natural attenuation rate of chlorinate solvents contamination in shallow groundwater[J]. Earth Science Frontiers,2006,13(1):140-144. ⊗ doi: 10.3321/j.issn:1005-2321.2006.01.018