Responses of plants and rhizosphere microorganisms in constructed wetlands under sulfamethoxazole stress
-
摘要:
为探究磺胺甲恶唑 (sulfamethoxazole,SMX) 胁迫下人工湿地植物与根际微生物的响应机制,对不同浓度SMX在5种植物与根际微生物联合修复中的去除效率进行表征;依据SMX的去除效率,对唐菖蒲和风车草的根系活力、活性氧与抗氧化系统进行研究,同步分析其根际微生物群落在SMX和温度胁迫下的响应特征。结果表明:5种人工湿地植物与根际微生物联合修复中,唐菖蒲、风车草对SMX的去除率较高,平均值分别为40.38%、44.70%。当SMX浓度超过30 mg/L时,与0 mg/L时相比较,唐菖蒲、风车草的根系活力受到抑制,分别下降了69.77%、67.26%;随着SMX浓度的升高,唐菖蒲和风车草的活性氧含量分别增加了69.08%、72.67%,抗氧化酶活性降低了19.32%、24.83%;与常温条件(20~25 ℃)相比,低温条件下(4~12 ℃)下唐菖蒲、风车草的活性氧含量分别增加了2.26%、1.98%,抗氧化酶活性降低了47.72%、44.42%。高通量测序技术对根际微生物群落的测定结果表明,高浓度SMX对植物根际微生物群落多样性与物种丰富度有抑制作用,利用PICRUSt功能预测软件对微生物群落功能预测发现,以氨基酸和碳水化合物代谢功能为主的微生物细菌相对丰度较高。
Abstract:In order to explore the response mechanism of plants and rhizosphere microorganisms in constructed wetlands under the stress of sulfamethoxazole (SMX), the removal efficiency of different concentrations of SMX in the combined remediation of five plants and rhizosphere microorganisms was characterized. According to the removal efficiency of SMX, the root activity, reactive oxygen species and antioxidant system of Gladiolus hybridus and Cyperus alternifolius were studied, and the response characteristics of their rhizosphere microbial community under SMX and temperature stress were analyzed simultaneously. The results showed that the removal rates of SMX by Gladiolus hybridus and Cyperus alternifolius were the highest in the five constructed wetland plants and rhizosphere microorganisms, with an average of 40.38% and 44.70%, respectively. When SMX concentration was higher than 30 mg/L, the root activity of Gladiolus hybridus and Cyperus alternifolius was inhibited, which was 69.77% and 67.26% lower than that of 0 mg/L, respectively. With the increase of SMX concentration, the reactive oxygen species (ROS) content of Gladiolus hybridus and Cyperus alternifolius increased by 69.08% and 72.67% compared with 0 mg/L, respectively, but the antioxidant enzyme activities decreased by 19.32% and 24.83%, respectively. Compared with normal temperature (20-25 ℃), the ROS content of Gladiolus hybridus and Cyperus alternifolius increased by 2.26% and 1.98%, and the antioxidant enzyme activity decreased by 47.72% and 44.42%, respectively, under low temperature (4-12 ℃). The measurement results of the rhizosphere microbial community by high-throughput sequencing technology showed that high concentrations of SMX inhibited the diversity and species richness of the plant rhizosphere microbial community. PICRUSt function prediction software was used to predict the microbial community function, and it was found that the relative abundance of microbes with amino acid and carbohydrate metabolism was higher.
-
Key words:
- plants /
- sulfamethoxazole /
- temperature /
- microbial community /
- function prediction
-
图 2 不同SMX浓度下唐菖蒲和风车草根系活力变化
注:同图1。
Figure 2. Changes of root activity of Gladiolus hybridus and Cyperus alternifolius in the presence of different initial concentrations of SMX
图 3 不同浓度SMX对唐菖蒲和风车草的活性氧自由基含量和抗氧化酶活性的影响
注:同图1。
Figure 3. Effects of SMX at different concentrations on reactive oxygen species content and antioxidant enzyme activity of Gladiolus hybridus and Cyperus alternifolius
图 4 不同温度对唐菖蒲和风车草的活性氧自由基含量和抗氧化酶活性的影响
注:同图1。
Figure 4. Effects of different temperatures on the reactive oxygen species content and antioxidant enzyme activity of Gladiolus hybridus and Cyperus alternifolius
表 1 样品中微生物群落组成的丰富度指数
Table 1. Richness index of microbial community composition in the sample
SMX浓
度/(mg/L)样本
编号Shannon-
Weiner指数Simpson
指数ACE
指数Chao
指数覆盖
率/%0 A_CK 4.26 0.03 501.61 464.90 98.76 B_CK 4.83 0.02 533.39 549.67 98.88 1 A_S1 3.81 0.08 481.53 534.28 98.71 B_S1 5.14 0.01 580.09 600.20 98.81 50 A_S50 2.98 0.16 601.12 489.07 98.59 B_S50 2.98 0.16 481.93 479.03 98.69 注:A_CK、A_S1、A_S50为唐菖蒲试验组;B_CK、B_S1、B_S50
为风车草试验组,下同。 -
[1] 王佳豪, 许锴, 刘康乐, 等.水中磺胺类抗生素去除技术的研究进展[J]. 应用化工,2020,49(7):1796-1801. doi: 10.3969/j.issn.1671-3206.2020.07.041WANG J H, XU K, LIU K L, et al. Research progress in removal of sulfonamides (SAs) in water[J]. Applied Chemical Industry,2020,49(7):1796-1801. doi: 10.3969/j.issn.1671-3206.2020.07.041 [2] 陈宇, 许亚南, 庞燕.抗生素赋存、来源及风险评估研究进展[J]. 环境工程技术学报,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180CHEN Y, XU Y N, PANG Y. Advances in research on the occurrence, source and risk assessment of antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(3):562-570. doi: 10.12153/j.issn.1674-991X.20200180 [3] LI B, ZHANG T. Different removal behaviours of multiple trace antibiotics in municipal wastewater chlorination[J]. Water Research,2013,47(9):2970-2982. doi: 10.1016/j.watres.2013.03.001 [4] 阮悦斐, 陈继淼, 郭昌胜, 等.天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报,2011,30(12):2586-2593.RUAN Y F, CHEN J M, GUO C S, et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China[J]. Journal of Agro-Environment Science,2011,30(12):2586-2593. [5] SAMARAWEERA D N D, LIU X, ZHONG G C, et al. Antibiotics in two municipal sewage treatment plants in Sri Lanka: occurrence, consumption and removal efficiency[J]. Emerging Contaminants,2019,5:272-278. doi: 10.1016/j.emcon.2019.08.001 [6] TAI Y P, FUNG-YEE TAM N, RUAN W F, et al. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants[J]. Chemosphere,2019,227:496-504. doi: 10.1016/j.chemosphere.2019.04.069 [7] CABELLO F C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment[J]. Environmental Microbiology,2006,8(7):1137-1144. doi: 10.1111/j.1462-2920.2006.01054.x [8] DAN A, YANG Y, DAI Y N, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology,2013,146:363-370. doi: 10.1016/j.biortech.2013.07.050 [9] CHEN J F, XU H L, SUN Y B, et al. Interspecific differences in growth response and tolerance to the antibiotic sulfadiazine in ten clonal wetland plants in South China[J]. Science of the Total Environment,2016,543:197-205. doi: 10.1016/j.scitotenv.2015.11.015 [10] 卢少勇, 李珂, 贾建丽, 等.串联垂直流人工湿地去除河水中磷的效果[J]. 环境科学研究,2016,29(8):1218-1223. doi: 10.13198/j.issn.1001-6929.2016.08.16LU S Y, LI K, JIA J L, et al. Phosphorus removal efficiency of simulated series vertical flow constructed wetlands treating river water[J]. Research of Environmental Sciences,2016,29(8):1218-1223. doi: 10.13198/j.issn.1001-6929.2016.08.16 [11] STEINBACHOVÁ-VOJTÍŠKOVÁ L, TYLOVÁ E, SOUKUP A, et al. Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia[J]. Environmental and Experimental Botany,2006,57(3):246-257. doi: 10.1016/j.envexpbot.2005.06.003 [12] LIANG Y X, ZHU H, BAÑUELOS G, et al. Removal of sulfamethoxazole from salt-laden wastewater in constructed wetlands affected by plant species, salinity levels and co-existing contaminants[J]. Chemical Engineering Journal,2018,341:462-470. doi: 10.1016/j.cej.2018.02.059 [13] 杨月琴, 钟成华.垂直流人工湿地去除布洛芬和罗红霉素的影响因素分析[J]. 环境化学,2019,38(12):2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601YANG Y Q, ZHONG C H. Analysis on influence factors of ibuprofen and roxithromycin removal in vertical flow constructed wetlands[J]. Environmental Chemistry,2019,38(12):2780-2788. doi: 10.7524/j.issn.0254-6108.2019010601 [14] LIU L, LIU Y H, LIU C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering,2013,53:138-143. doi: 10.1016/j.ecoleng.2012.12.033 [15] LIU B Y, LIU W Q, NIE X P, et al. Growth response and toxic effects of three antibiotics on Selenastrum capricornutum evaluated by photosynthetic rate and chlorophyll biosynthesis[J]. Journal of Environmental Sciences,2011,23(9):1558-1563. doi: 10.1016/S1001-0742(10)60608-0 [16] MAN Y, WANG J X, TAM N F Y, et al. Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species[J]. Science of the Total Environment,2020,706:135955. doi: 10.1016/j.scitotenv.2019.135955 [17] ZHANG W, HUANG M H, QI F F, et al. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors[J]. Bioresource Technology,2013,150:9-14. doi: 10.1016/j.biortech.2013.09.081 [18] BUTTON M, COSWAY K, SUI J, et al. Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands[J]. Science of the Total Environment,2019,649:1017-1028. doi: 10.1016/j.scitotenv.2018.08.395 [19] 文欢欢, 郑新宇, 肖清铁, 等. 镉污染条件下水稻对假单胞菌 TCd-1微生物修复的生理响应[J]. 生态学报, 2022, 42(5): 1924-1933WEN H H, ZHENG X Y, XIAO Q T, et al. Physiological response of rice (Oryza stiva L. ) to the microbial remediation by Pseudomonas TCd-1 under cadmium contaminated conditions[J]. Acta Ecologica Sinica, 2022, 42(5): 1924-1933. [20] 汤叶涛, 关丽捷, 仇荣亮, 等.镉对超富集植物滇苦菜抗氧化系统的影响[J]. 生态学报,2010,30(2):324-332.TANG Y T, GUAN L J, QIU R L, et al. Antioxidative defense to cadmium in hyperaccumulator Picris divaricata V[J]. Acta Ecologica Sinica,2010,30(2):324-332. [21] LIU N, LIN Z F, GUAN L L, et al. Antioxidant enzymes regulate reactive oxygen species during pod elongation in Pisum sativum and Brassica chinensis[J]. PLoS One,2014,9(2):e87588. doi: 10.1371/journal.pone.0087588 [22] de BULGARELLI D, GARRIDO-OTER R, MÜNCH P C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe,2015,17(3):392-403. [23] 周品成, 刘希强, 康兴生, 等.4种水生植物对兽用抗生素去除效果比较[J]. 华南农业大学学报,2019,40(6):67-73. doi: 10.7671/j.issn.1001-411X.201901020ZHOU P C, LIU X Q, KANG X S, et al. Removal effects of four aquatic plants on veterinary antibiotics[J]. Journal of South China Agricultural University,2019,40(6):67-73. doi: 10.7671/j.issn.1001-411X.201901020 [24] 鲍陈燕, 顾国平, 章明奎.兽用抗生素胁迫对水芹生长及其抗生素积累的影响[J]. 土壤通报,2016,47(1):164-172. doi: 10.19336/j.cnki.trtb.2016.01.026BAO C Y, GU G P, ZHANG M K. Effects of veterinary antibiotics stress on growth and antibiotics accumulation of Oenanthe javanica DC[J]. Chinese Journal of Soil Science,2016,47(1):164-172. doi: 10.19336/j.cnki.trtb.2016.01.026 [25] 张天莹, 余彬彬, 林文轩, 等.磺胺二甲基嘧啶与环丙沙星对小麦种子萌发和幼苗生长的影响[J]. 农业资源与环境学报,2021,38(2):176-184.ZHANG T Y, YU B B, LIN W X, et al. Effects of sulfadimidine and ciprofloxacin stress on seed germination and seedling growth of wheat[J]. Journal of Agricultural Resources and Environment,2021,38(2):176-184. [26] WEBER K P, MITZEL M R, SLAWSON R M, et al. Effect of ciprofloxacin on microbiological development in wetland mesocosms[J]. Water Research,2011,45(10):3185-3196. doi: 10.1016/j.watres.2011.03.042 [27] 廖德润, 刘超翔, 王振, 等.兽用抗生素胁迫对空心菜的影响研究[J]. 环境科学学报,2013,33(9):2558-2564. doi: 10.13671/j.hjkxxb.2013.09.008LIAO D R, LIU C X, WANG Z, et al. Effects of veterinary antibiotics stress on Ipomoea aquatica Forsk[J]. Acta Scientiae Circumstantiae,2013,33(9):2558-2564. doi: 10.13671/j.hjkxxb.2013.09.008 [28] MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9(10):490-498. doi: 10.1016/j.tplants.2004.08.009 [29] NIE X P, LIU B Y, YU H J, et al. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata[J]. Environmental Pollution,2013,172:23-32. doi: 10.1016/j.envpol.2012.08.013 [30] 杨弯弯, 武氏秋贤, 吴亦潇, 等.恩诺沙星和硫氰酸红霉素对铜绿微囊藻的毒性研究[J]. 中国环境科学,2013,33(10):1829-1834.YANG W W, WU S Q X, WU Y X, et al. Toxicity of enrofloxacin and erythromycin thiocyanate on Microcystis aeruginosa[J]. China Environmental Science,2013,33(10):1829-1834. [31] 陈友媛, 狄玥莉, 卢爽, 等.石莼对磺胺甲恶唑和红霉素胁迫耐受性及指标表征[J]. 中国环境科学,2017,37(8):3114-3122. doi: 10.3969/j.issn.1000-6923.2017.08.037CHEN Y Y, DI Y L, LU S, et al. Tolerance and indicator characteristics of Ulva pertusa under sulfamethoxazole and erythromycin stress[J]. China Environmental Science,2017,37(8):3114-3122. doi: 10.3969/j.issn.1000-6923.2017.08.037 [32] RIAZ L, MAHMOOD T, COYNE M S, et al. Physiological and antioxidant response of wheat (Triticum aestivum) seedlings to fluoroquinolone antibiotics[J]. Chemosphere,2017,177:250-257. doi: 10.1016/j.chemosphere.2017.03.033 [33] DURET S, HOANG H M, GUILLIER L, et al. Interactions between refrigeration temperatures, energy consumption in a food plant and microbiological quality of the food product: application to refrigerated stuffed pasta[J]. Food Control,2021,126:108076. doi: 10.1016/j.foodcont.2021.108076 [34] KHAN T A, YUSUF M, AHMAD A, et al. Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress[J]. Food Chemistry,2019,289:500-511. doi: 10.1016/j.foodchem.2019.03.029 [35] 魏湜, 罗宁, 李晶, 等.低温胁迫下玉米苗期根系保护酶活性及内源激素变化[J]. 东北农业大学学报,2014,45(9):1-8. doi: 10.3969/j.issn.1005-9369.2014.09.001WEI S, LUO N, LI J, et al. Change of the root protective enzyme activities and endogenous hormones of maize seedling under low-temperature stress[J]. Journal of Northeast Agricultural University,2014,45(9):1-8. doi: 10.3969/j.issn.1005-9369.2014.09.001 [36] 李任任, 耿贵, 吕春华, 等.低温对甜菜种子发芽及幼苗生长的影响[J]. 黑龙江大学自然科学学报,2020,37(6):718-725. doi: 10.13482/j.issn1001-7011.2020.10.125LI R R, GENG G, LÜ C H, et al. Effect of low temperature on seed germination and seedling growth of sugar beet[J]. Journal of Natural Science of Heilongjiang University,2020,37(6):718-725. doi: 10.13482/j.issn1001-7011.2020.10.125 [37] 刘志刚, 渠晓东, 张远, 等.浑河主要污染物对大型底栖动物空间分布的影响[J]. 环境工程技术学报,2012,2(2):116-123. doi: 10.3969/j.issn.1674-991X.2012.02.018LIU Z G, QU X D, ZHANG Y, et al. Effects of main contaminations on the spatial distribution of macroinvertebrates in the Hun River[J]. Journal of Environmental Engineering Technology,2012,2(2):116-123. doi: 10.3969/j.issn.1674-991X.2012.02.018 [38] 万琼, 吴仪, 王信, 等.BAF中不同高度海绵铁填料表面物种多样性分析[J]. 环境工程技术学报,2018,8(2):161-168. doi: 10.3969/j.issn.1674-991X.2018.02.022WAN Q, WU Y, WANG X, et al. Analysis of surface species diversity of sponge iron filler with different height in BAF[J]. Journal of Environmental Engineering Technology,2018,8(2):161-168. doi: 10.3969/j.issn.1674-991X.2018.02.022 [39] DENG S H, PENG S, XIE B H, et al. Influence characteristics and mechanism of organic carbon on denitrification, N2O emission and NO2- accumulation in the iron [Fe0]-oxidizing supported autotrophic denitrification process[J]. Chemical Engineering Journal,2020,393:124736. doi: 10.1016/j.cej.2020.124736 [40] XIE B H, TANG X B, NG H Y, et al. Biological sulfamethoxazole degradation along with anaerobically digested centrate treatment by immobilized microalgal-bacterial consortium: performance, mechanism and shifts in bacterial and microalgal communities[J]. Chemical Engineering Journal,2020,388:124217. doi: 10.1016/j.cej.2020.124217 [41] XU J M, LIU X H, LÜ Y, et al. Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: growth physiology, transportation, and microbial community[J]. Ecotoxicology and Environmental Safety,2020,206:111332. doi: 10.1016/j.ecoenv.2020.111332 [42] 张崇淼, 徐欢, 刘静, 等.城市污水处理系统中沙门氏菌对四环素和磺胺甲恶唑的耐药性[J]. 环境科学研究,2014,27(3):309-313. doi: 10.13198/j.issn.1001-6929.2014.03.13ZHANG C M, XU H, LIU J, et al. Tetracycline and sulfamethoxazole resistance and distribution of resistance genes in Salmonella isolated from municipal wastewater treatment plants[J]. Research of Environmental Sciences,2014,27(3):309-313. doi: 10.13198/j.issn.1001-6929.2014.03.13 [43] 魏健, 何锦垚, 宋永会, 等.臭氧催化氧化-BAF深度处理抗生素废水效能及微生物群落结构分析[J]. 环境科学学报,2020,40(6):2090-2100. doi: 10.13671/j.hjkxxb.2020.0025WEI J, HE J Y, SONG Y H, et al. Advanced treatment of antibiotic wastewater by catalytic ozonation combined with BAF process and an analysis of the bacterial community structures[J]. Acta Scientiae Circumstantiae,2020,40(6):2090-2100. doi: 10.13671/j.hjkxxb.2020.0025 [44] JECHALKE S, HEUER H, SIEMENS J, et al. Fate and effects of veterinary antibiotics in soil[J]. Trends in Microbiology,2014,22(9):536-545. doi: 10.1016/j.tim.2014.05.005 [45] YAN Q, MIN J, YU Y H, et al. Microbial community response during the treatment of pharmaceutically active compounds (PhACs) in constructed wetland mesocosms[J]. Chemosphere,2017,186:823-831. doi: 10.1016/j.chemosphere.2017.08.064 [46] ANSOLA G, ARROYO P, SÁENZ de MIERA L E. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of the Total Environment,2014,473/474:63-71. doi: 10.1016/j.scitotenv.2013.11.125 [47] FANG D X, ZHAO G, XU X Y, et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions[J]. Bioresource Technology,2018,249:684-693. doi: 10.1016/j.biortech.2017.10.063 [48] WAGNER M, LOY A. Bacterial community composition and function in sewage treatment systems[J]. Current Opinion in Biotechnology,2002,13(3):218-227. doi: 10.1016/S0958-1669(02)00315-4 [49] QI M Y, LIANG B, ZHANG L, et al. Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes[J]. Environmental Science & Technology,2021,55(5):3270-3282. [50] 温慧洋. 微生物燃料电池耦合人工湿地对典型抗生素的去除特性及强化措施研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020. [51] ZHANG L L, ZHANG C, LIAN K T, et al. Effects of chronic exposure of antibiotics on microbial community structure and functions in hyporheic zone sediments[J]. Journal of Hazardous Materials,2021,416:126141. ⊗ doi: 10.1016/j.jhazmat.2021.126141