Technology progress and economic cost analysis of photovoltaic industry based on life cycle assessment
-
摘要:
为了对光伏产业的环境影响、技术进步、经济成本进行系统分析,采用生命周期评价对光伏产业环境影响进行量化分析;基于评价结果,构建光伏产业技术进步评价模型并计算技术进步率;将光伏产业生产设备投资额结合环境影响评价结果计算成本下降率,同时梳理近年来的光伏电价补贴政策,计算补贴下降率;最后将光伏产业技术进步与经济成本进行综合分析。结果表明:生产1 kWp多晶硅光伏组件时光伏产业的环境影响潜值为83.83 Pt,高纯多晶硅、硅片、电池片和组件的环境影响潜值占比分别为43.05%、16.24%、14.84%和25.87%;以2016年为基准年,2017—2020年光伏产业技术进步率分别为5.20%、8.98%、12.48%和20.91%,成本下降率分别为−5.81%、−21.05%、−25.23%和−32.63%,补贴下降率分别为−15.60%、−30.36%、−40.46%和−51.33%;同期光伏补贴下降率大于技术进步率和成本下降率,技术进步速度和成本下降速度在2017年后较为同步,反映了补贴下降在一定程度上能够倒逼企业采用更先进的技术以降低成本。
Abstract:To systematically analyze the environmental impact, technological progress and economic cost of the photovoltaic industry, firstly the life cycle assessment (LCA) was conducted to quantitatively analyze the environmental impacts of the industry. Based on the results of LCA, the technology progress assessment model of photovoltaic industry was constructed and the technology progress rates were calculated. Then the investments of equipment in photovoltaic industry were combined with the results of the environmental impact assessment to calculate the cost reduction rates. At the same time, the photovoltaic electricity price subsidy policies in recent years were sorted out to calculate the subsidy decline rates. Finally, the photovoltaic industry technological progress and economic cost were comprehensively analyzed. The results showed that the photovoltaic industry had an environmental impact potential of 83.83 Pt when producing 1 kWp polysilicon photovoltaic modules, among which high purity polysilicon, silicon wafer, cell and module accounted for 43.05%, 16.24%, 14.84% and 25.87%, respectively. Taking 2016 as the base year, the technological progress rates of the photovoltaic industry in 2017, 2018, 2019 and 2020 were 5.20%, 8.98%, 12.48% and 20.91%; the cost reduction rates were −5.81%, −21.05%, −25.23% and −32.63%; and the subsidy decline rates were −15.60%, -30.36%, −40.46% and −51.33%, respectively. During the same period, the decline rates of photovoltaic subsidies were greater than the rates of technological progress and cost decline. The rates of technological progress and cost decline were more synchronized after 2017, reflecting that the decline in subsidies could force companies to adopt more advanced technologies to reduce costs to a certain extent.
-
表 1 终点破坏类生命周期评价模型参数
Table 1. Parameters of end-point damage life cycle assessment model
破坏终点 影响类别 人均基准值 单位 权重/% 人体健康 致癌作用、细颗粒物形成、气候变化、水资源消耗、光化学臭氧形成 0.019 DALY 60 生态系统 气候变化、水资源消耗、生态毒性、酸化、富营养化、光化学臭氧形成 3.68×10−5 species 25 资源 矿产资源、化石燃料 2 536.37 MJ 15 注:DALY(disability adjusted life years,伤残调整寿命年)表示理想寿命和现实寿命间的差值;species表示环境影响造成生态系统的物种损失数量;MJ表示资源开采消耗的额外能源量。 表 2 1 kWp多晶硅光伏组件生命周期清单
Table 2. Life cycle inventory of 1 kWp polysilicon photovoltaic modules
投入/排放 单位 高纯多晶硅 硅片 电池片 组件 投入 物料 高纯多晶硅 kg — 5.353 3 — — 硅片 片 — — 262 — 电池片 片 — — — 247 工业硅 kg 5.9 — — — 液氯 kg 1.1 — — — 液氢 kg 0.286 8 — — — NaOH kg 1.9 — — — 石灰石 kg 1.3 — — — 坩埚 kg — 1.135 3 — — 氩气 kg — 2.060 9 — — 切割线 kg — 2.241 0 — — 砂浆 kg — 1.601 5 — — 聚乙二醇 kg — 6.932 8 — — 黏合剂 kg — 0.012 1 — — 清洗剂 kg — 0.167 8 — — HCl kg — 0.031 5 0.243 8 — HF kg — 0.062 9 2.004 7 — HNO3 kg — 0.204 5 3.172 5 — 乙酸 kg — 0.141 3 — — 玻璃 kg — 0.299 2 — 36.066 7 银浆 kg — — 0.023 5 — 铝浆 kg — — 0.217 9 — 液氨 kg — — 0.075 9 — 三氯氧磷 kg — — 0.021 7 — 硅烷 kg — — 0.023 5 — H2SO4 kg — — 0.600 8 — KOH kg — — 0.124 6 — 液氧 kg — — 0.045 7 — 铝合金 kg — — — 12.4 焊带(锡) kg — — — 0.1573 焊带(铜) kg — — — 0.6293 EVA胶膜 kg — — — 5.3 背板(PVDF) kg — — — 0.68 背板(PET) kg — — — 2.2933 能源 电 kW·h 355.997 6 179.843 0 119.472 9 47.466 7 蒸汽 kg 123.1 排放 气体污染物 硅尘 kg 0.014 6 — 0.005 989 — HCl kg 0.000 5 — 0.005 370 — NOx kg 0.001 1 0.008 7 0.051 471 — HF kg 0.000 01 0.001 0 0.001 120 — Cl2 kg — — 0.000 019 7 — NH3 kg — — 0.015 712 — 非甲烷挥发性有机物(NMVOC) kg — — 0.000 704 3 — 水体污染物 COD kg 0.010 9 0.312 0 0.017 638 6 0.000 101 3 氯化物 kg 0.412 2 — — — 氟化物 kg 0.002 6 0.016 3 0.005 923 7 — 悬浮物 kg 0.007 7 0.090 5 0.046 775 4 — 氨氮 kg 0.000 1 — — — 总氮 kg — — 0.127 624 0 — 总磷 kg — — 0.0005195 — 固体废物 硅废料 kg 0.012 4 — — — 废坩埚 kg — 0.996 4 — — 废切割线 kg — 2.241 0 — — 废玻璃 kg — 0.254 1 — — 表 3 光伏产业技术进步评价指标体系
Table 3. Evaluation index system of photovoltaic industry technology progress
产品 指标 单位 指标属性 高纯多晶硅 电耗 kW·h/kg 负 蒸汽消耗 kg/kg 负 硅耗 kg/kg 负 硅片 电耗 kW·h/kg 负 电池片 电耗 万kW·h/MWp 负 铝浆消耗 mg/片 负 银浆消耗 mg/片 负 组件 组件功率 W 正 表 4 2016—2020年光伏各产品设备投资额
Table 4. Equipment investment of photovoltaic products from 2016 to 2020
产品 单位 2016年 2017年 2018年 2019年 2020年 高纯多晶硅 万元/t 15.00 14.50 11.50 11.00 10.20 硅片 万元/t 5.10 4.20 2.80 2.60 2.10 电池片 万元/MW 60.00 53.50 42.00 30.30 22.50 组件 万元/MW 6.90 6.80 6.80 6.80 6.30 表 5 光伏电价补贴政策
Table 5. Photovoltaic electricity price subsidy policies
元/(kW·h) 文号 Ⅰ类资源区 Ⅱ类资源区 Ⅲ类资源区 执行时间 发改价格〔2011〕1594号[38] 1.15、1.001) 2011年7月24日 发改价格〔2013〕1638号[39] 0.90 0.95 1.00 2013年8月26日 发改价格〔2015〕3044号[40] 0.80 0.88 0.98 2016年1月1日 发改价格〔2016〕2729号[41] 0.65 0.75 0.85 2017年1月1日 发改价格规〔2017〕2196号[42] 0.55 0.65 0.75 2018年1月1日 发改能源〔2018〕823号[43] 0.50 0.60 0.70 2018年5月31日 发改价格〔2019〕761号[44] 0.40 0.45 0.55 2019年7月1日 发改价格〔2020〕511号[45] 0.35 0.40 0.49 2020年6月1日 1)上网电价未区分资源区,而是按项目核准建设、建成投产日期等区分。 表 6 2013—2020年光伏电价补贴
Table 6. Photovoltaic electricity price subsidy amount from 2013 to 2020
元/(kW·h) 年份 Ⅰ类资源区 Ⅱ类资源区 Ⅲ类资源区 2013 1.07 1.08 1.10 2014 0.90 0.95 1.00 2015 0.90 0.95 1.00 2016 0.80 0.88 0.98 2017 0.65 0.75 0.85 2018 0.52 0.62 0.72 2019 0.45 0.52 0.62 2020 0.37 0.42 0.51 表 7 2017—2020年光伏电价补贴下降率
Table 7. Reduction rate of photovoltaic electricity price subsidy from 2017 to 2020
% 年份 Ⅰ类资源区 Ⅱ类资源区 Ⅲ类资源区 平均值 2017 −18.75 −14.77 −13.27 −15.60 2018 −35.00 −29.55 −26.53 −30.36 2019 −43.75 −40.91 −36.73 −40.46 2020 −53.75 −52.27 −47.96 −51.33 -
[1] 王世江, 金艳梅, 江华, 等. 中国光伏产业发展路线图: 2020年版[R]. 北京: 中国光伏行业协会, 2021. [2] 王勃华. 中国光伏行业2020年回顾与2021年展望[EB/OL]. (2021-02-25)[2021-07-15].https://guangfu.bjx.com.cn/news/20210225/1138322.shtml. [3] FU Y Y, LIU X, YUAN Z W. Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China[J]. Journal of Cleaner Production,2015,86:180-190. doi: 10.1016/j.jclepro.2014.07.057 [4] WU P S, MA X M, JI J P, et al. Review on life cycle assessment of energy payback of solar photovoltaic systems and a case study[J]. Energy Procedia,2017,105:68-74. doi: 10.1016/j.egypro.2017.03.281 [5] DESIDERI U, PROIETTI S, ZEPPARELLI F, et al. Life cycle assessment of a ground-mounted 1778 kWp photovoltaic plant and comparison with traditional energy production systems[J]. Applied Energy,2012,97:930-943. doi: 10.1016/j.apenergy.2012.01.055 [6] LATUNUSSA C E L, ARDENTE F, BLENGINI G A, et al. Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels[J]. Solar Energy Materials and Solar Cells,2016,156:101-111. [7] 赵若楠, 董莉, 乔琦, 等.考虑处置阶段的光伏组件生命周期评价[J]. 环境工程技术学报,2021,11(4):807-813. doi: 10.12153/j.issn.1674-991X.20200258ZHAO R N, DONG L, QIAO Q, et al. Life cycle assessment of photovoltaic module considering disposal stage[J]. Journal of Environmental Engineering Technology,2021,11(4):807-813. doi: 10.12153/j.issn.1674-991X.20200258 [8] PU Y R, WANG P, WANG Y Y, et al. Environmental effects evaluation of photovoltaic power industry in China on life cycle assessment[J]. Journal of Cleaner Production,2021,278:123993. doi: 10.1016/j.jclepro.2020.123993 [9] KIM H, CHA K, FTHENAKIS V M, et al. Life cycle assessment of cadmium telluride photovoltaic (CdTe PV) systems[J]. Solar Energy,2014,103:78-88. doi: 10.1016/j.solener.2014.02.008 [10] SHARMA R, TIWARI G N. Life cycle assessment of stand-alone photovoltaic (SAPV) system under on-field conditions of New Delhi, India[J]. Energy Policy,2013,63:272-282. doi: 10.1016/j.enpol.2013.08.081 [11] CHEN W, HONG J L, YUAN X L, et al. Environmental impact assessment of monocrystalline silicon solar photovoltaic cell production: a case study in China[J]. Journal of Cleaner Production,2016,112:1025-1032. doi: 10.1016/j.jclepro.2015.08.024 [12] 于志强. 冶金法多晶硅及其光伏系统并网发电的生命周期评价研究[D]. 昆明: 昆明理工大学, 2017. [13] 王祯仪, 汪季, 高永, 等.光伏电站建设对沙区生态环境的影响[J]. 水土保持通报,2019,39(1):191-196.WANG Z Y, WANG J, GAO Y, et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation,2019,39(1):191-196. [14] GÖKHAN Y, BÜSRA Ç, ALIE G, et al. Investigation of life cycle CO2 emissions of the polycrystalline and cadmium telluride PV panels[J]. Environmental Nanotechnology, Monitoring & Management,2020,14:100343. [15] YAN J C, BROESICKE O A, WANG D, et al. Parametric life cycle assessment for distributed combined cooling, heating and power integrated with solar energy and energy storage[J]. Journal of Cleaner Production,2020,250:119483. doi: 10.1016/j.jclepro.2019.119483 [16] LI Z H, ZHANG W, XIE L Z, et al. Life cycle assessment of semi-transparent photovoltaic window applied on building[J]. Journal of Cleaner Production,2021,295:126403. doi: 10.1016/j.jclepro.2021.126403 [17] SIERRA D, ARISTIZÁBAL A J, HERNÁNDEZ J A, et al. Life cycle analysis of a building integrated photovoltaic system operating in Bogotá, Colombia[J]. Energy Reports,2020,6:10-19. [18] LING-CHIN J, HEIDRICH O, ROSKILLY A P. Life cycle assessment (LCA)-from analysing methodology development to introducing an LCA framework for marine photovoltaic (PV) systems[J]. Renewable and Sustainable Energy Reviews,2016,59:352-378. doi: 10.1016/j.rser.2015.12.058 [19] 涂强, 莫建雷, 范英.中国可再生能源政策演化、效果评估与未来展望[J]. 中国人口·资源与环境,2020,30(3):29-36.TU Q, MO J L, FAN Y. The evolution and evaluation of China's renewable energy policies and their implications for the future[J]. China Population, Resources and Environment,2020,30(3):29-36. [20] 马中, 蒋姝睿, 马本, 等.中国环境保护相关电价政策效应与资金机制[J]. 中国环境科学,2020,40(6):2715-2728. doi: 10.3969/j.issn.1000-6923.2020.06.043MA Z, JIANG S R, MA B, et al. Policy effect and funding mechanism of environmental related electricity pricing in China[J]. China Environmental Science,2020,40(6):2715-2728. doi: 10.3969/j.issn.1000-6923.2020.06.043 [21] WANG Z X, FAN W R. Economic and environmental impacts of photovoltaic power with the declining subsidy rate in China[J]. Environmental Impact Assessment Review,2021,87:106535. doi: 10.1016/j.eiar.2020.106535 [22] SHAO X F, FANG T S. Performance analysis of government subsidies for photovoltaic industry: based on spatial econometric model[J]. Energy Strategy Reviews,2021,34:100631. doi: 10.1016/j.esr.2021.100631 [23] ZHANG H M, XU Z D, ZHOU Y, et al. Optimal subsidy reduction strategies for photovoltaic poverty alleviation in China: a cost-benefit analysis[J]. Resources, Conservation and Recycling,2021,166:105352. [24] SYMEONIDOU M M,ZIOGA C,PAPADOPOULOS A M. Life cycle cost optimization analysis of battery storage system for residential photovoltaic panels[J]. Journal of Cleaner Production,2021,309:127234. doi: 10.1016/j.jclepro.2021.127234 [25] 王嘉阳, 周保荣, 吴伟杰, 等.西部集中式与东部分布式光伏平准化度电成本研究[J]. 南方电网技术,2020,14(9):80-89.WANG J Y, ZHOU B R, WU W J, et al. Levelized cost of energy of centralized photovoltaic power in Western China and distributed photovoltaic power in Eastern China[J]. Southern Power System Technology,2020,14(9):80-89. [26] 何后裕, 何华琴, 王骞, 等.考虑碳足迹与交易的分布式光伏发电成本分摊[J]. 电力建设,2020,41(6):85-92. doi: 10.12204/j.issn.1000-7229.2020.06.011HE H Y, HE H Q, WANG Q, et al. Cost sharing of distributed photovoltaic power generation considering carbon footprint and transactions[J]. Electric Power Construction,2020,41(6):85-92. doi: 10.12204/j.issn.1000-7229.2020.06.011 [27] YANG C H, YAO R, ZHOU K L. Forecasting of electricity price subsidy based on installed cost of distributed photovoltaic in China[J]. Energy Procedia,2019,158:3393-3398. doi: 10.1016/j.egypro.2019.01.943 [28] 杨昌辉, 葛志祥.关于分布式光伏发电上网定价研究[J]. 价格理论与实践,2018(4):51-55.YANG C H, GE Z X. Feed-in tariff pricing model and simulation analysis of distributed photovoltaic generation in China[J]. Price:Theory & Practice,2018(4):51-55. [29] 昌敦虎, 田川, 张泽阳, 等.基于LCOE模型的光伏发电经济效益分析: 以宜昌农村地区光伏扶贫电站项目为例[J]. 环境科学研究,2020,33(10):2412-2420.CHANG D H, TIAN C, ZHANG Z Y, et al. Economic benefit analysis on photovoltaic power generation with LCOE model: the case of poverty alleviation project in rural areas of Yichang City[J]. Research of Environmental Sciences,2020,33(10):2412-2420. [30] WU Z Q, NJOKE M L, TIAN G N, et al. Challenges of investment and financing for developing photovoltaic power generation in Cameroon, and the countermeasures[J]. Journal of Cleaner Production,2021,299:126910. doi: 10.1016/j.jclepro.2021.126910 [31] 国家质量监督检验检疫总局. 环境管理 生命周期评价原则与框架: GB/T 24040—2008[S]. 北京: 中国标准出版社, 2008. [32] 李雪迎, 白璐, 杨庆榜, 等. 我国终点型生命周期影响评价模型及基准值初步研究[J]. 环境科学研究,2021,34(11):2778-2786.LI X Y,BAI L,YANG Q B,et al.Preliminary study on endpoint life cycle impact assessment model and normalisation value in China[J].Research of Environmental Sciences,2021,34(11):2778-2786. [33] 谢明辉, 阮久莉, 乔琦, 等.基于生命周期评价的多晶硅片环境影响研究[J]. 环境工程技术学报,2016,6(1):72-77. doi: 10.3969/j.issn.1674-991X.2016.01.011XIE M H, RUAN J L, QIAO Q, et al. Research on environmental impacts of multi-silicon wafer based on life cycle assessment[J]. Journal of Environmental Engineering Technology,2016,6(1):72-77. doi: 10.3969/j.issn.1674-991X.2016.01.011 [34] 顾秋容. 我国光伏产业成本问题研究[D]. 武汉: 华中科技大学, 2012. [35] XIE M H, RUAN J L, BAI W N, et al. Pollutant payback time and environmental impact of Chinese multi-crystalline photovoltaic production based on life cycle assessment[J]. Journal of Cleaner Production,2018,184:648-659. doi: 10.1016/j.jclepro.2018.02.290 [36] 鲁正, 孙炜, 陈芸菲.基于用户侧的光伏项目成本-效益分析[J]. 太阳能学报,2021,42(4):209-214.LU Z, SUN W, CHEN Y F. Cost-benefit evaluation of photovoltaic system based on customer-side[J]. Acta Energiae Solaris Sinica,2021,42(4):209-214. [37] 王思聪.政府补贴政策演进对光伏发电产业发展影响研究[J]. 价格理论与实践,2018(9):62-65.WANG S C. The evolution of PV subsidy policy and its impacts on PV market in China[J]. Price:Theory & Practice,2018(9):62-65. [38] 国家发展改革委关于完善太阳能光伏发电上网电价政策的通知:发改价格〔2011〕1594号[A/OL]. (2011-08-01)[2021-08-12]. http://www.nea.gov.cn/2011-08/01/c_131097437.htm. [39] 国家发展改革委关于发挥价格杠杆作用促进光伏产业健康发展的通知:发改价格〔2013〕1638号[A/OL]. (2013-08-26)[2021-08-12].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201308/t20130830_963934_ext.html. [40] 国家发展改革委关于完善陆上风电光伏发电上网标杆电价政策的通知:发改价格〔2015〕3044号[A/OL]. (2015-12-22)[2021-08-12].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201512/t20151224_963536_ext.html. [41] 国家发改委关于调整光伏发电陆上风电标杆上网电价的通知:发改价格〔2016〕2729号[A/OL]. (2016-12-28)[2021-08-12]. http://www.gov.cn/xinwen/2016-12/28/content_5153820.htm. [42] 国家发展改革委关于2018年光伏发电项目价格政策的通知:发改价格规〔2017〕2196号[A/OL]. (2017-12-19)[2021-08-12].https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/201712/t20171222_960932.html?code=&state=123. [43] 国家发展改革委、财政部、国家能源局关于2018年光伏发电有关事项的通知:发改能源〔2018〕823号[A/OL]. (2018-06-01)[2021-08-12]. http://www.nea.gov.cn/2018-06/01/c_137223460.htm. [44] 国家发展改革委关于完善光伏发电上网电价机制有关问题的通知:发改价格〔2019〕761号[A/OL]. (2019-04-28)[2021-08-21].https://www.ndrc.gov.cn/xxgk/zcfb/tz/201904/t20190430_962433.html?code=&state=123. [45] 国家发展改革委关于2020年光伏发电上网电价政策有关事项的通知:发改价格〔2020〕511号[A/OL]. (2020-03-31)[2021-08-21].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202004/t20200402_1225031_ext.html. [46] 国家发展改革委关于2021年新能源上网电价政策有关事项的通知:发改价格〔2021〕833号[A/OL]. (2021-06-07)[2021-08-12].https://www.ndrc.gov.cn/xxgk/zcfb/tz/202106/t20210611_1283088.html?code=&state=123.