留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芬顿调理对含铅工业污泥电渗透脱水减量效果的影响

吕航 李佳旭 黄烨 熊巧 吴旭

吕航,李佳旭,黄烨,等.芬顿调理对含铅工业污泥电渗透脱水减量效果的影响[J].环境工程技术学报,2022,12(4):1253-1258 doi: 10.12153/j.issn.1674-991X.20210390
引用本文: 吕航,李佳旭,黄烨,等.芬顿调理对含铅工业污泥电渗透脱水减量效果的影响[J].环境工程技术学报,2022,12(4):1253-1258 doi: 10.12153/j.issn.1674-991X.20210390
LÜ H,LI J X,HUANG Y,et al.Effect of Fenton conditioning on the reduction of lead-containing industrial sludge by electroosmotic dewatering[J].Journal of Environmental Engineering Technology,2022,12(4):1253-1258 doi: 10.12153/j.issn.1674-991X.20210390
Citation: LÜ H,LI J X,HUANG Y,et al.Effect of Fenton conditioning on the reduction of lead-containing industrial sludge by electroosmotic dewatering[J].Journal of Environmental Engineering Technology,2022,12(4):1253-1258 doi: 10.12153/j.issn.1674-991X.20210390

芬顿调理对含铅工业污泥电渗透脱水减量效果的影响

doi: 10.12153/j.issn.1674-991X.20210390
基金项目: 国家重点研发计划项目(2020YFC1908704)
详细信息
    作者简介:

    吕航(1993—),男,博士后,主要研究方向为环境电化学,593818401@qq.com

    通讯作者:

    吴旭(1984—),男,教授,主要研究方向为环境电化学,profxuwu@hust.edu.cn

  • 中图分类号: X705

Effect of Fenton conditioning on the reduction of lead-containing industrial sludge by electroosmotic dewatering

  • 摘要:

    针对铅酸电池厂含铅工业污泥难以脱水减量的问题,利用污泥中存在的Fe2+进行芬顿调理预处理,探究H2O2添加量对后续污泥电渗透脱水减量化效果的影响。结果表明:芬顿调理预处理会打破污泥中部分絮体,使污泥黏度由18.0 mPa·s降至4.7 mPa·s,污泥中部分无机离子在脱水过程中从污泥固相体系进入滤液中,造成后续电渗透脱水剩余泥饼的含水率由82.72%降至69.34%,挥发性悬浮物含量增加约30%。相对于原始污泥直接进行脱水,采用优化的H2O2添加量调理污泥可促进后续的污泥电渗透脱水减量66.20%,同时污泥干基中铅含量由265.2 g/kg提高到453.6 g/kg,这有利于污泥的后续资源化利用或无害化填埋处理。

     

  • 图  1  污泥处理流程

    Figure  1.  Flow chart of sludge treatment

    图  2  剩余泥饼质量、污泥减量程度与H2O2添加量的关系

    Figure  2.  Relationship between residual sludge cake quality, sludge reduction degree and the amount of H2O2 added

    图  3  污泥调理后LSV扫描曲线及电渗透脱水过程电流和脱水质量变化

    Figure  3.  LSV scanning curve after sludge conditioning, electroosmotic dewatering process current and dewatering mass variation

    图  4  电渗透脱水剩余泥饼的含水率和VS/TS

    Figure  4.  Water content and VS/TS of electroosmosis dehydrated residual mud cake

    图  5  调理过程中过氧化氢和Fe2+浓度随时间的变化

    Figure  5.  H2O2 and Fe2+ concentration variation curve during the conditioning process

    图  6  不同调理条件下电渗透脱水后泥饼SEM形貌

    Figure  6.  SEM morphology of sludge cake after electroosmotic dewatering under different conditioning conditions

    表  1  污泥调理参数

    Table  1.   Sludge conditioning parameters

    试验编号加入硫酸使污泥pH=3H2O2添加量/(mg/mL)
    SC0不添加0
    SC1添加0
    SC2添加8.82
    SC3添加17.65
    SC4添加35.29
    SC5添加52.95
    下载: 导出CSV
  • [1] LÜ H, XING S Q, LIU D G, et al. Soluble metal ions migration and distribution in sludge electro-dewatering[J]. Environmental Research,2020,180:108862. doi: 10.1016/j.envres.2019.108862
    [2] 陈丹丹, 窦昱昊, 卢平, 等.污泥深度脱水技术研究进展[J]. 化工进展,2019,38(10):4722-4746.

    CHEN D D, DOU Y H, LU P, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress,2019,38(10):4722-4746.
    [3] ZHANG S T, YANG Z J, LÜ X, et al. Novel electro-dewatering system for activated sludge biosolids in bench-scale, pilot-scale and industrial-scale applications[J]. Chemical Engineering Research and Design,2017,121:44-56. doi: 10.1016/j.cherd.2017.02.035
    [4] 吴卓宇, 梁耀轩, 张淑娟, 等.生活污泥电渗透脱水的最佳参数组合[J]. 中山大学学报(自然科学版),2020,59(6):33-40.

    WU Z Y, LIANG Y X, ZHANG S J, et al. The best combination of parameters for electroosmosis dehydration of sewage sludge[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(6):33-40.
    [5] MAHMOUD A, HOADLEY A F A, CONRARDY J B, et al. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering[J]. Water Research,2016,103:109-123. doi: 10.1016/j.watres.2016.07.016
    [6] LÜ H, LIU D G, ZHANG Y L, et al. Effects of temperature variation on wastewater sludge electro-dewatering[J]. Journal of Cleaner Production,2019,214:873-880. doi: 10.1016/j.jclepro.2019.01.033
    [7] 李亚林, 刘蕾, 周涛, 等.电渗透交变电场联合双氧化技术污泥深度脱水研究[J]. 现代化工,2020,40(8):180-184.

    LI Y L, LIU L, ZHOU T, et al. Study on deep-dewatering of sludge by electro-osmosis under alternating electric field combined with double oxidation technology[J]. Modern Chemical Industry,2020,40(8):180-184.
    [8] LÜ H, LIU D G, XING S Q, et al. The effects of aging for improving wastewater sludge electro-dewatering performances[J]. Journal of Industrial and Engineering Chemistry,2019,80:647-655. doi: 10.1016/j.jiec.2019.08.049
    [9] 洪晨, 邢奕, 司艳晓, 等.芬顿试剂氧化对污泥脱水性能的影响[J]. 环境科学研究,2014,27(6):615-622.

    HONG C, XING Y, SI Y X, et al. Influence of Fenton's reagent oxidation on sludge dewaterability[J]. Research of Environmental Sciences,2014,27(6):615-622.
    [10] 虞文波. 市政污泥Fenton化学调理处理及电渗透物理强化深度脱水方法及机理研究[D]. 武汉: 华中科技大学, 2017.
    [11] 郭波, 田瑜, 范晨, 等.绿色纳米铁/H2O2联用两性脱水剂调理污泥研究[J]. 中国给水排水,2020,36(13):62-67.

    GUO B, TIAN Y, FAN C, et al. Sludge conditioning by green iron nanoparticles/H2O2 combined with amphoteric dewatering agent[J]. China Water & Wastewater,2020,36(13):62-67.
    [12] 邢思奇, 吕航, 张文标, 等.污泥电解脱水过程中泥饼厚度变化研究[J]. 环境工程技术学报,2019,9(6):643-648. doi: 10.12153/j.issn.1674-991X.2019.06.180

    XING S Q, LÜ H, ZHANG W B, et al. Study on thickness change of mud cake during electrolytic dewatering process[J]. Journal of Environmental Engineering Technology,2019,9(6):643-648. doi: 10.12153/j.issn.1674-991X.2019.06.180
    [13] 刘剑, 张惠灵, 周思思, 等.高岭土模拟铜污染土壤电动力学修复[J]. 环境工程学报,2012,6(12):4694-4698.

    LIU J, ZHANG H L, ZHOU S S, et al. Remediation of kaolin simulated copper contaminated soil by electrodynamics[J]. Chinese Journal of Environmental Engineering,2012,6(12):4694-4698.
    [14] DENG W Y, LAI Z C, HU M H, et al. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge[J]. Chemosphere,2020,243:125372. doi: 10.1016/j.chemosphere.2019.125372
    [15] 李光明. 超声类芬顿体系的构建及催化效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [16] 王忠华. Fenton体系降解含聚污水提效机制与方法研究[D]. 大庆: 东北石油大学, 2019.
    [17] 董立文, 汪诚文, 张鹤清, 等.电导率对城镇污泥电渗透脱水效果的影响[J]. 中国环境科学,2013,33(2):209-214. doi: 10.3969/j.issn.1000-6923.2013.02.003

    DONG L W, WANG C W, ZHANG H Q, et al. Effect of conductivity on the performance of electro-dewatering of municipal sludge[J]. China Environmental Science,2013,33(2):209-214. doi: 10.3969/j.issn.1000-6923.2013.02.003
    [18] 刘波潮, 高俊斌, 曹宝升, 等.超声辅助芬顿氧化降解油田压裂返排液[J]. 油田化学,2020,37(2):358-362.

    LIU B C, GAO J B, CAO B S, et al. Degradation of the fracturing flowback fluid in the oil field using ultrasound-assisted Fenton oxidation[J]. Oilfield Chemistry,2020,37(2):358-362.
    [19] 周翠红, 凌鹰, 曹洪月.市政污泥脱水性能实验研究与形态学分析[J]. 中国环境科学,2013,33(5):898-903. doi: 10.3969/j.issn.1000-6923.2013.05.020

    ZHOU C H, LING Y, CAO H Y. Dewatering capability and morphological of municipal sludge[J]. China Environmental Science,2013,33(5):898-903. doi: 10.3969/j.issn.1000-6923.2013.05.020
    [20] 高诗卉. Fe0/Fe3C@CS激发PMS与peroxone-Fe(Ⅲ)调理对活性污泥脱水性能的影响研究[D]. 北京: 北京林业大学, 2020.
    [21] 孙文田. 剩余活性污泥吸附铅、镉特征的比较研究[D]. 长春: 吉林大学, 2008.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  151
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-07

目录

    /

    返回文章
    返回