Effect of Fenton conditioning on the reduction of lead-containing industrial sludge by electroosmotic dewatering
-
摘要:
针对铅酸电池厂含铅工业污泥难以脱水减量的问题,利用污泥中存在的Fe2+进行芬顿调理预处理,探究H2O2添加量对后续污泥电渗透脱水减量化效果的影响。结果表明:芬顿调理预处理会打破污泥中部分絮体,使污泥黏度由18.0 mPa·s降至4.7 mPa·s,污泥中部分无机离子在脱水过程中从污泥固相体系进入滤液中,造成后续电渗透脱水剩余泥饼的含水率由82.72%降至69.34%,挥发性悬浮物含量增加约30%。相对于原始污泥直接进行脱水,采用优化的H2O2添加量调理污泥可促进后续的污泥电渗透脱水减量66.20%,同时污泥干基中铅含量由265.2 g/kg提高到453.6 g/kg,这有利于污泥的后续资源化利用或无害化填埋处理。
Abstract:Aiming at the difficulty of dewatering and realizing volume reduction of the lead-containing industrial sludge produced from lead-acid battery plants, Fe2+ in the sludge was used to perform Fenton preconditioning, and the effect of different dosages of hydrogen peroxide on the subsequent electroosmotic dewatering and reduction of the sludge was explored. The experimental results showed that the sludge pretreated by Fenton conditioning would break some of the flocs and reduce sludge viscosity from 18.0 mPa·s to 4.7 mPa·s. Part of the inorganic ions in the sludge left the solid phase system and entered the filtrate during the dewatering process, resulting in the water content of the subsequent electroosmotic dewatered sludge cake reducing from 82.72% to 69.34% and the content of volatile suspended solids increasing about 30%. Compared with the direct dewatering of the original sludge, the optimized H2O2 addition could promote the subsequent reduction of 66.20% of sludge by electroosmotic dewatering. At the same time, Pb content in the dry basis was increased from 265.2 g/kg to 453.6 g/kg, which was beneficial for the subsequent resource utilization or harmless landfill treatment of the sludge.
-
Key words:
- lead-containing sludge /
- Fenton /
- electroosmotic dewatering /
- sludge reduction /
- heavy mental
-
表 1 污泥调理参数
Table 1. Sludge conditioning parameters
试验编号 加入硫酸使污泥pH=3 H2O2添加量/(mg/mL) SC0 不添加 0 SC1 添加 0 SC2 添加 8.82 SC3 添加 17.65 SC4 添加 35.29 SC5 添加 52.95 -
[1] LÜ H, XING S Q, LIU D G, et al. Soluble metal ions migration and distribution in sludge electro-dewatering[J]. Environmental Research,2020,180:108862. doi: 10.1016/j.envres.2019.108862 [2] 陈丹丹, 窦昱昊, 卢平, 等.污泥深度脱水技术研究进展[J]. 化工进展,2019,38(10):4722-4746.CHEN D D, DOU Y H, LU P, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress,2019,38(10):4722-4746. [3] ZHANG S T, YANG Z J, LÜ X, et al. Novel electro-dewatering system for activated sludge biosolids in bench-scale, pilot-scale and industrial-scale applications[J]. Chemical Engineering Research and Design,2017,121:44-56. doi: 10.1016/j.cherd.2017.02.035 [4] 吴卓宇, 梁耀轩, 张淑娟, 等.生活污泥电渗透脱水的最佳参数组合[J]. 中山大学学报(自然科学版),2020,59(6):33-40.WU Z Y, LIANG Y X, ZHANG S J, et al. The best combination of parameters for electroosmosis dehydration of sewage sludge[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2020,59(6):33-40. [5] MAHMOUD A, HOADLEY A F A, CONRARDY J B, et al. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering[J]. Water Research,2016,103:109-123. doi: 10.1016/j.watres.2016.07.016 [6] LÜ H, LIU D G, ZHANG Y L, et al. Effects of temperature variation on wastewater sludge electro-dewatering[J]. Journal of Cleaner Production,2019,214:873-880. doi: 10.1016/j.jclepro.2019.01.033 [7] 李亚林, 刘蕾, 周涛, 等.电渗透交变电场联合双氧化技术污泥深度脱水研究[J]. 现代化工,2020,40(8):180-184.LI Y L, LIU L, ZHOU T, et al. Study on deep-dewatering of sludge by electro-osmosis under alternating electric field combined with double oxidation technology[J]. Modern Chemical Industry,2020,40(8):180-184. [8] LÜ H, LIU D G, XING S Q, et al. The effects of aging for improving wastewater sludge electro-dewatering performances[J]. Journal of Industrial and Engineering Chemistry,2019,80:647-655. doi: 10.1016/j.jiec.2019.08.049 [9] 洪晨, 邢奕, 司艳晓, 等.芬顿试剂氧化对污泥脱水性能的影响[J]. 环境科学研究,2014,27(6):615-622.HONG C, XING Y, SI Y X, et al. Influence of Fenton's reagent oxidation on sludge dewaterability[J]. Research of Environmental Sciences,2014,27(6):615-622. [10] 虞文波. 市政污泥Fenton化学调理处理及电渗透物理强化深度脱水方法及机理研究[D]. 武汉: 华中科技大学, 2017. [11] 郭波, 田瑜, 范晨, 等.绿色纳米铁/H2O2联用两性脱水剂调理污泥研究[J]. 中国给水排水,2020,36(13):62-67.GUO B, TIAN Y, FAN C, et al. Sludge conditioning by green iron nanoparticles/H2O2 combined with amphoteric dewatering agent[J]. China Water & Wastewater,2020,36(13):62-67. [12] 邢思奇, 吕航, 张文标, 等.污泥电解脱水过程中泥饼厚度变化研究[J]. 环境工程技术学报,2019,9(6):643-648. doi: 10.12153/j.issn.1674-991X.2019.06.180XING S Q, LÜ H, ZHANG W B, et al. Study on thickness change of mud cake during electrolytic dewatering process[J]. Journal of Environmental Engineering Technology,2019,9(6):643-648. doi: 10.12153/j.issn.1674-991X.2019.06.180 [13] 刘剑, 张惠灵, 周思思, 等.高岭土模拟铜污染土壤电动力学修复[J]. 环境工程学报,2012,6(12):4694-4698.LIU J, ZHANG H L, ZHOU S S, et al. Remediation of kaolin simulated copper contaminated soil by electrodynamics[J]. Chinese Journal of Environmental Engineering,2012,6(12):4694-4698. [14] DENG W Y, LAI Z C, HU M H, et al. Effects of frequency and duty cycle of pulsating direct current on the electro-dewatering performance of sewage sludge[J]. Chemosphere,2020,243:125372. doi: 10.1016/j.chemosphere.2019.125372 [15] 李光明. 超声类芬顿体系的构建及催化效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [16] 王忠华. Fenton体系降解含聚污水提效机制与方法研究[D]. 大庆: 东北石油大学, 2019. [17] 董立文, 汪诚文, 张鹤清, 等.电导率对城镇污泥电渗透脱水效果的影响[J]. 中国环境科学,2013,33(2):209-214. doi: 10.3969/j.issn.1000-6923.2013.02.003DONG L W, WANG C W, ZHANG H Q, et al. Effect of conductivity on the performance of electro-dewatering of municipal sludge[J]. China Environmental Science,2013,33(2):209-214. doi: 10.3969/j.issn.1000-6923.2013.02.003 [18] 刘波潮, 高俊斌, 曹宝升, 等.超声辅助芬顿氧化降解油田压裂返排液[J]. 油田化学,2020,37(2):358-362.LIU B C, GAO J B, CAO B S, et al. Degradation of the fracturing flowback fluid in the oil field using ultrasound-assisted Fenton oxidation[J]. Oilfield Chemistry,2020,37(2):358-362. [19] 周翠红, 凌鹰, 曹洪月.市政污泥脱水性能实验研究与形态学分析[J]. 中国环境科学,2013,33(5):898-903. doi: 10.3969/j.issn.1000-6923.2013.05.020ZHOU C H, LING Y, CAO H Y. Dewatering capability and morphological of municipal sludge[J]. China Environmental Science,2013,33(5):898-903. doi: 10.3969/j.issn.1000-6923.2013.05.020 [20] 高诗卉. Fe0/Fe3C@CS激发PMS与peroxone-Fe(Ⅲ)调理对活性污泥脱水性能的影响研究[D]. 北京: 北京林业大学, 2020. [21] 孙文田. 剩余活性污泥吸附铅、镉特征的比较研究[D]. 长春: 吉林大学, 2008.