Influence of phosphorus on the performance of sulfur autotrophic denitrification
-
摘要:
为探究硫自养反硝化所需的最低磷浓度,对硫自养反硝化系统进行磷饥饿处理,给予不同磷浓度的进水,考察磷浓度对硫自养反硝化效果和微生物群落结构的影响。结果表明:随着磷饥饿期的延长,
$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N去除率由饥饿前的98.1%~99.6%逐步降至24.8%~49.6%,且出水中随之出现亚硝酸盐的积累。补充磷后,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N去除率随进水磷浓度的增加显著提升,且进水磷浓度越高,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N去除率能越快恢复至饥饿前水平(98%以上),出水中的亚硝酸盐氮浓度也越快降至饥饿前水平(不足0.05 mg/L)。当进水中磷浓度不低于0.200 mg/L时,硫自养反硝化效率不受磷浓度限制。磷浓度影响硫自养反硝化系统的微生物多样性,磷恢复处理组的物种多样性和丰度均显著高于磷饥饿处理组。在磷恢复处理组中,硫自养反硝化相关的功能菌属是优势菌属,相对丰度占45.78%,而在磷饥饿处理组中,该功能菌属相对丰度仅占4.67%,磷浓度极大地影响了硫自养反硝化系统中的硫自养反硝化相关功能菌的相对丰度。-
关键词:
- 硫自养反硝化 /
- $ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N去除率 /
- 磷饥饿 /
- 微生物群落结构
Abstract:In order to explore the minimum requirement of phosphorus for sulfur autotrophic denitrification, the sulfur autotrophic denitrification system was first treated with phosphorus starvation, and then the influents of different phosphorus concentrations were provided to investigate the influence of phosphorus concentration on the sulfur autotrophic denitrification performance and microbial community structure. The results showed that with the extension of the phosphorus starvation period,
$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N removal efficiency declined gradually from 98.1%-99.6% before phosphorus starvation to 24.8%-49.6% after phosphorus starvation, accompanied by an accumulation of nitrite in the effluent. After phosphorus addition,$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N removal efficiency increased significantly with increasing influent phosphorus concentration. The higher the influent phosphorus concentration, the faster the$ {\mathrm{N}\mathrm{O}}_{x}^{-} $ -N removal efficiency and effluent nitrite concentration recovered to the level before phosphorus starvation, with more than 98% and less than 0.05 mg/L, respectively. The efficiency of sulfur autotrophic denitrification was not limited by phosphorus concentration when the influent phosphorus concentration was not lower than 0.200 mg/L. The phosphorus concentration affected the microbial diversity of the sulfur autotrophic denitrification system, and the community diversity and richness of the sulfur autotrophic denitrification group recovered from phosphorus starvation were significantly higher than that of the group under phosphorus starvation. The functional genera related to sulfur autotrophic denitrification were the predominant genera in the sulfur autotrophic denitrification group recovered from phosphorus starvation, with the relative abundance accounting for 45.78%, while the relative abundance only accounted for 4.67% in the group under phosphorus starvation. The phosphorus concentration greatly affected the relative abundance of functional genera related to sulfur autotrophic denitrification in the sulfur autotrophic denitrification system. -
表 1 试验系统运行阶段与运行参数
Table 1. Operational phases and parameters of the test system
运行阶段 运行时
长/d进水$ {\mathrm{N}\mathrm{O}}_{x}^{-} $-N浓度/
(mg/L)进水TP浓度/
(mg/L)HRT/h 常规运行期 21 10~21 0.6~1.0 3.5 磷饥饿期 20 20~25 <0.05 3.5 磷恢复期 16 17~25 0.050、0.075、0.100、
0.200、0.300、
0.400、0.5003.5 表 2 不同处理组微生物群落丰度和多样性
Table 2. Richness and diversity of microbial communities of different treatment groups
处理组 序列数 OTU
数Shannon
指数Chao
指数Ace
指数Simpson
指数覆盖率 磷恢复 36 477 232 3.32 235.88 236.62 0.09 0.999 7 磷饥饿 44 143 212 2.80 216.33 217.71 0.16 0.999 7 -
[1] SHAO M F, ZHANG T, FANG H H P. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology,2010,88(5):1027-1042. doi: 10.1007/s00253-010-2847-1 [2] ASHOK V, HAIT S. Remediation of nitrate-contaminated water by solid-phase denitrification process: a review[J]. Environmental Science and Pollution Research,2015,22(11):8075-8093. doi: 10.1007/s11356-015-4334-9 [3] 张鑫, 张妍, 毕直磊, 等.中国地表水硝酸盐分布及其来源分析[J]. 环境科学,2020,41(4):1594-1606.ZHANG X, ZHANG Y, BI Z L, et al. Distribution and source analysis of nitrate in surface waters of China[J]. Environmental Science,2020,41(4):1594-1606. [4] 生态环境部. 中国生态环境状况公报(2018年)[A/OL]. (2019-05-22)[2021-11-11].https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201905/P020190619587632630618.pdf. [5] TIAN T A, YU H Q. Denitrification with non-organic electron donor for treating low C/N ratio wastewaters[J]. Bioresource Technology,2020,299:122686. doi: 10.1016/j.biortech.2019.122686 [6] 唐诗琴, 熊丽丽, 蒋睿, 等.生物质-硫磺混合营养反硝化体系对尾水中NO3 −-N的去除效果[J]. 环境工程技术学报,2020,10(3):414-423. doi: 10.12153/j.issn.1674-991X.20190143TANG S Q, XIONG L L, JIANG R, et al. Removal of nitrate in tail water by biomass-sulfur mixed denitrification process[J]. Journal of Environmental Engineering Technology,2020,10(3):414-423. doi: 10.12153/j.issn.1674-991X.20190143 [7] 李芳芳, 施春红, 周北海, 等.硫磺和黄铁矿为填料的生物滤池自养反硝化强化处理二沉尾水[J]. 环境科学研究,2016,29(11):1693-1700. doi: 10.13198/j.issn.1001-6929.2016.11.17LI F F, SHI C H, ZHOU B H, et al. Enhanced treatment of secondary effluent via autotrophic denitrification biofilter process using sulfur and pyrite as fillings[J]. Research of Environmental Sciences,2016,29(11):1693-1700. doi: 10.13198/j.issn.1001-6929.2016.11.17 [8] 郑绍智, 刘会娟, 彭剑峰, 等.异养-自养耦合深度脱氮系统的生物脱氮性能研究[J]. 环境科学研究,2020,33(2):385-391.ZHENG S Z, LIU H J, PENG J F, et al. Biological nitrogen removal performance of heterotrophic-autotrophic coupling deep denitrification system[J]. Research of Environmental Sciences,2020,33(2):385-391. [9] WANG Z, HE S B, HUANG J, et al. Comparison of heterotrophic and autotrophic denitrification processes for nitrate removal from phosphorus-limited surface water[J]. Environmental Pollution,2018,238:562-572. doi: 10.1016/j.envpol.2018.03.080 [10] MOON H S, SHIN D Y, NAM K, et al. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier[J]. Chemosphere,2008,73(5):723-728. doi: 10.1016/j.chemosphere.2008.06.065 [11] FAN C Z, WANG P Q, ZHOU W L, et al. The influence of phosphorus on the autotrophic and mixotrophic denitrification[J]. Science of the Total Environment,2018,643:127-133. doi: 10.1016/j.scitotenv.2018.06.185 [12] TONG Y D, WANG M Z, PEÑUELAS J, et al. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11566-11572. doi: 10.1073/pnas.1920759117 [13] LI R H, YUAN Y L, ZHAN X M, et al. Phosphorus removal in a sulfur-limestone autotrophic denitrification (SLAD) biofilter[J]. Environmental Science and Pollution Research,2014,21(2):972-978. doi: 10.1007/s11356-013-1966-5 [14] HUNTER W J. Accumulation of nitrite in denitrifying barriers when phosphate is limiting[J]. Journal of Contaminant Hydrology,2003,66(1/2):79-91. [15] LIU C S, LI W F, LI X C, et al. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor[J]. Bioresource Technology,2017,243:1237-1240. doi: 10.1016/j.biortech.2017.07.030 [16] HUANG S, YU D S, CHEN G H, et al. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: simultaneous nitrate and sulfur removal[J]. Chemosphere,2021,278:130413. doi: 10.1016/j.chemosphere.2021.130413 [17] VO T K Q, KANG S, AN S N, et al. Exploring critical factors influencing on autotrophic denitrification by elemental sulfur-based carriers in upflow packed-bed bioreactors[J]. Journal of Water Process Engineering,2021,40:101866. doi: 10.1016/j.jwpe.2020.101866 [18] CHEN F M, LI X A, GU C W, et al. Selectivity control of nitrite and nitrate with the reaction of S0 and achieved nitrite accumulation in the sulfur autotrophic denitrification process[J]. Bioresource Technology,2018,266:211-219. doi: 10.1016/j.biortech.2018.06.062 [19] ZHOU W L, SUN Y J, WU B T, et al. Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone[J]. Journal of Environmental Sciences,2011,23(11):1761-1769. doi: 10.1016/S1001-0742(10)60635-3 [20] 李芳芳, 施春红, 李海波, 等.饥饿对硫自养反硝化反应器生物群落结构的影响[J]. 环境科学,2017,38(3):1109-1115.LI F F, SHI C H, LI H B, et al. Impact of starvation conditions on biological community structure in sulfur autotrophic denitrification reactor[J]. Environmental Science,2017,38(3):1109-1115. [21] GOMES J C M, de AZEVEDO J S N, VERAS A A D O, et al. Draft genome sequence of Psychrobacter sp. ENNN9_III: a strain isolated from water in a polluted temperate estuarine system (Ria de Aveiro, Portugal)[J]. Genomics Data,2016,8:21-24. doi: 10.1016/j.gdata.2016.02.013 [22] ZHENG H Y, LIU Y, SUN G D, et al. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium[J]. Journal of Environmental Sciences,2011,23(11):1888-1893. doi: 10.1016/S1001-0742(10)60615-8 [23] XU Z C, CHEN X L, LI H S, et al. Combined heterotrophic and autotrophic system for advanced denitrification of municipal secondary effluent in full-scale plant and bacterial community analysis[J]. Science of the Total Environment,2020,717:136981. doi: 10.1016/j.scitotenv.2020.136981 [24] 王佩琦, 周伟丽, 何圣兵, 等.磷对混养反硝化污泥活性和微生物群落结构的影响[J]. 环境科学,2018,39(3):1350-1356.WANG P Q, ZHOU W L, HE S B, et al. Effects of phosphorus on the activity and bacterial community in mixotrophic denitrification sludge[J]. Environmental Science,2018,39(3):1350-1356. □