留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物配位体模型的汾河铜水质基准研究

李扬 牛永华 李会仙 孙福红 苏海磊

李扬,牛永华,李会仙,等.基于生物配位体模型的汾河铜水质基准研究[J].环境工程技术学报,2022,12(5):1711-1718 doi: 10.12153/j.issn.1674-991X.20210404
引用本文: 李扬,牛永华,李会仙,等.基于生物配位体模型的汾河铜水质基准研究[J].环境工程技术学报,2022,12(5):1711-1718 doi: 10.12153/j.issn.1674-991X.20210404
LI Y,NIU Y H,LI H X,et al.Study on water quality criteria of copper in the Fen River based on biotic ligand model[J].Journal of Environmental Engineering Technology,2022,12(5):1711-1718 doi: 10.12153/j.issn.1674-991X.20210404
Citation: LI Y,NIU Y H,LI H X,et al.Study on water quality criteria of copper in the Fen River based on biotic ligand model[J].Journal of Environmental Engineering Technology,2022,12(5):1711-1718 doi: 10.12153/j.issn.1674-991X.20210404

基于生物配位体模型的汾河铜水质基准研究

doi: 10.12153/j.issn.1674-991X.20210404
基金项目: 国家自然科学基金项目(41503106);山西省水利厅2020年水资源管理与保护项目(SZY202001); 国家重点研发计划项目(2021YFC3200104)
详细信息
    作者简介:

    李扬(1985—),女,高级工程师,博士,主要从事水文学及水资源研究,happyyang211@163.com

    通讯作者:

    李会仙(1976—),女,副研究员,主要从事水质基准与环境毒理学研究,lihuix111@126.com

  • 中图分类号: X522,X171.5

Study on water quality criteria of copper in the Fen River based on biotic ligand model

  • 摘要:

    铜是山西汾河流域主要污染物之一,为准确评估流域铜暴露的生态风险,调查了汾河流域本土水生生物的毒性数据,运用生物配位体模型方法获得汾河铜的保护水生生物短期和长期水质基准值,分别为98.62和29.71 μg/L。依据铜的水质基准进行风险评价,结果显示,汾河水体中铜对水生生物属于无风险水平。

     

  • 图  1  汾河水样采样点分布

    Figure  1.  Water sampling sites in the Fen River

    图  2  铜对淡水生物的物种敏感度分布曲线

    Figure  2.  Simulation of species sensitivity distribution curves for freshwater life exposed to Cu

    表  1  汾河水质参数及铜浓度

    Table  1.   Water quality parameters and concentrations of copper in the Fen River mg/L 

    采样点水温1)pH2)硬度3)DOCCa2+Mg2+Na+K+SO42−Cl碱度
    S123.88.48320.291.36910.1181.9424.9375.947.39342.17105.10327.60
    S224.08.37240.220.77210.5579.7825.2369.366.92312.1896.27262.08
    S323.38.28220.200.82310.8767.9524.2986.298.36274.04110.92393.12
    S424.38.37225.200.82911.1675.8225.1270.838.44287.05102.63277.20
    S523.98.07270.240.9429.0868.2125.1862.637.97260.9785.94352.80
    S621.28.15170.150.4967.8554.4224.6346.846.06153.3325.86352.80
    S724.18.15159.140.57310.6159.7725.1666.897.54228.5282.73252.00
    S819.28.11185.170.9768.8256.9424.4366.946.34324.00156.91246.96
    S9228.13179.160.6198.1254.2724.2651.555.29169.8064.34252.00
    S1021.28.16440.400.6098.53166.3119.83111.2933.84605.04361.39201.60
    S1120.98.35120.110.91912.1733.4425.09126.2117.03201.73177.37252.00
    S1220.98.33141.131.3717.6750.5724.7573.595.29230.3093.47378.00
    S1320.78.34180.160.6768.1634.1624.0857.0611.32121.5874.62267.12
    S1421.29.05160.140.3216.3540.6424.4353.492.21180.2262.52252.00
    S1521.28.31200.180.6658.2066.3624.6649.135.4893.0046.29443.52
    中值21.28.31182.660.7728.8259.7724.6640.347.39230.3093.47267.12
      1)水温单位为℃;2)pH无量纲;3)铜浓度单位为μg/L。
    下载: 导出CSV

    表  2  采用汾河水体水质参数标准化的铜的急性毒性数据

    Table  2.   Acute toxicity values of copper standardized by water quality parameters of the Fen River

    拉丁名标准化毒性值/(μg/L)数据来源
    节肢动物门蚤科蚤属大型溞Daphnia magna268.130文献[2,11,30-32]
    节肢动物门蚤科网纹蚤属模糊网纹蚤Ceriodaphnia dubia274.469文献[33-37]
    脊索动物门鳅科泥鳅属泥鳅Misgurnus anguillicaudatus826.735文献[14]
    环节动物门带丝蚓科带丝蚓属夹杂带丝蚓Lumbriculus variegatus1 044.078文献[38]
    脊索动物门鲤科鲢属鲢鱼Hypophthalmichtys molitrix1 637.161文献[39]
    脊索动物门鲤科草鱼属草鱼Ctenopharyngodon idellus3 727.492文献[39]
    脊索动物门鲤科麦穗鱼属麦穗鱼Pseudorasbora parva4 248.686文献[14]
    节肢动物门长臂虾科沼虾属青虾Macrobrachium nipponense5 006.789文献[14]
    脊索动物门鲤科鲤属鲤鱼Cyprinus carpio9 137.915文献[14]
    脊索动物门鲤科鲫属鲫鱼Carassius auratus12 645.654文献[14]
    节肢动物门摇蚊科摇蚊属羽摇蚊幼虫Chironomus plumosus1 380 854.580文献[14]
    下载: 导出CSV

    表  3  铜对淡水水生生物的短期基准值及模型评价参数

    Table  3.   Short-term criteria values and model evaluation parameters of copper on freshwater aquatic organisms

    模型数量HC5/(μg/L)R2RMSESSEKSp短期基准值/(μg/L)
    Logistic11 93.3250.939 90.064 60.045 90.999 2 46.663
    Log-logistic11197.2420.964 90.049 30.026 80.999 998.621
    Normal1188.9200.932 60.068 40.051 50.990 444.460
    Log-normal11191.8670.964 70.049 50.027 01.000 095.933
    Extreme value1111.8850.896 20.084 90.079 30.894 25.943
    下载: 导出CSV

    表  4  不同水体中铜水质基准与国内外相关基准/标准比较

    Table  4.   Comparison between water quality criteria of copper in various water bodies and criteria/standards at home and abroad

    水体推导方法水生生物基准/(μg/L)
    短期长期
    汾河(本研究)BLM-SSD98.6229.71
    太湖[14]BLM-SSD53.5016.10
    BLM-TPR32.209.70
    澜沧江[13]BLM-SSD26.791.11
    太湖[40]PSSD14.573.26
    中国[41]评价因子法2.00
    TPR9.105.63
    SSD30.09.44
    美国[11]TPR23.38 (180,CMC)14.8(180, CCC)
    BLM-TPR2.341.45
    加拿大评价因子法3.91(180)
    澳大利亚SSD1.4(30, HRTV)
    GB 3838—2002
    1 000(Ⅱ类~Ⅲ类)
    注:TPR为毒性百分数排序法;PSSD为概率物种敏感度分布法;CMC为基准最大浓度;CCC 为基准连续浓度;HRTV为高度可靠触发浓度。
    下载: 导出CSV

    表  5  国内外不同水域的水质参数

    Table  5.   Water quality parameters of different water bodies at home and abroad mg/L

    区域水温1)pH2)硬度DOCCa2+Mg2+Na+K+SO4 2−Cl碱度
    汾河21.28.311838.8259.7724.6640.347.39230.393.47267.12
    澜沧江[13]18.18.111.1217.970.713.842.3048.3513.24112.32
    太湖[14]8.98.091374.9481.7518.7398.79.7084.9169.1987
    美国[11]20.07.51000.514.012.126.32.181.41.9065.0
      1)水温单位为℃;2)pH无量纲。
    下载: 导出CSV
  • [1] DONNACHIE R L, JOHNSON A C, MOECKEL C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution,2014,194:17-23. doi: 10.1016/j.envpol.2014.07.008
    [2] MEADOR J P. The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity[J]. Aquatic Toxicology,1991,19(1):13-31. doi: 10.1016/0166-445X(91)90025-5
    [3] 王伟莉, 焦聪颖, 闫振广, 等.水体硬度对铜和镉生物毒性的影响[J]. 环境工程技术学报,2013,3(3):272-278. doi: 10.3969/j.issn.1674-991X.2013.03.043

    WANG W L, JIAO C Y, YAN Z G, et al. Effects of water hardness on ecotoxicity of cadmium and copper to aquatic organisms[J]. Journal of Environmental Engineering Technology,2013,3(3):272-278. doi: 10.3969/j.issn.1674-991X.2013.03.043
    [4] de SCHAMPHELAERE K A C, JANSSEN C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:  the effects of calcium, magnesium, sodium, potassium, and pH[J]. Environmental Science & Technology,2002,36(1):48-54.
    [5] CRAVEN A M, AIKEN G R, RYAN J N. Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model[J]. Environmental Science & Technology,2012,46(18):9948-9955.
    [6] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology,2004,38(23):6177-6192.
    [7] 吕怡兵, 李国刚, 宫正宇, 等.应用BLM模型预测我国主要河流中Cu的生物毒性[J]. 环境科学学报,2006,26(12):2080-2085. doi: 10.3321/j.issn:0253-2468.2006.12.023

    LÜ Y B, LI G G, GONG Z Y, et al. To predict copper toxicity in China 5 main rivers by using biotic ligand model (BLM)[J]. Acta Scientiae Circumstantiae,2006,26(12):2080-2085. doi: 10.3321/j.issn:0253-2468.2006.12.023
    [8] FENG C L, WU F C, ZHENG B H, et al. Biotic ligand models for metals: a practical application in the revision of water quality standards in China[J]. Environmental Science & Technology,2012,46(20):10877-10878.
    [9] 王春艳. 生物配体模型预测中国典型河流水体铜毒性及其水质基准指标应用研究[D]. 武汉: 武汉大学, 2012.
    [10] 徐潇. 铜对斜生栅藻急性毒性预测模型: 生物配体模型的建立与验证[D]. 杭州: 浙江工业大学, 2019.
    [11] US EPA. Aquatic life ambient freshwater quality criteria-copper: EPA-822-R-07-001[S]. Washington DC: United States Environmental Protection Agency Office of Water 4304T, 2007.
    [12] WU F C, MENG W, ZHAO X L, et al. China embarking on development of its own national water quality criteria system[J]. Environmental Science & Technology,2010,44(21):7992-7993.
    [13] 陈莎. 澜沧江铜的水质基准与生态风险评价研究[D]. 昆明: 昆明理工大学, 2014.
    [14] ZHANG Y H, ZANG W C, QIN L M, et al. Water quality criteria for copper based on the BLM approach in the freshwater in China[J]. PLoS One,2017,12(2):e0170105. doi: 10.1371/journal.pone.0170105
    [15] 李俊英, 李素清, 韩锦涛.汾河上游流域沿程典型水样点水质变化分析[J]. 中国水土保持科学,2011,9(3):59-64. doi: 10.3969/j.issn.1672-3007.2011.03.011

    LI J Y, LI S Q, HAN J T. Changes of water quality in typical sites along upstream of Fen River[J]. Science of Soil and Water Conservation,2011,9(3):59-64. doi: 10.3969/j.issn.1672-3007.2011.03.011
    [16] 张旭芳. 汾河上游藻类植物群落结构及水质评价[D]. 太原: 山西大学, 2013.
    [17] 杨国义, 闫雨龙, 何秋生, 等.汾河沉积物中重金属污染及生态风险评价[J]. 太原科技大学学报,2010,31(4):339-344. doi: 10.3969/j.issn.1673-2057.2010.04.020

    YANG G Y, YAN Y L, HE Q S, et al. Pollution and ecological risk assessment of heavy metals in sediment of Fenhe River[J]. Journal of Taiyuan University of Science and Technology,2010,31(4):339-344. doi: 10.3969/j.issn.1673-2057.2010.04.020
    [18] 霍雪萍.汾河流域沉积物中重金属分布及潜在风险评价[J]. 太原科技大学学报,2017,38(5):397-404.

    HUO X P. Distribution of heavy metals in sediments of Fen River and potential risk evaluation[J]. Journal of Taiyuan University of Science and Technology,2017,38(5):397-404.
    [19] 高爱枝, 张铁刚, 武如心.汾河临汾断面原生动物种类初步调查[J]. 山西农业大学学报,2000,20(2):138-139.

    GAO A Z, ZHANG T G, WU R X. Pretimiary investigation about the variery of protozoon in Linfen section of Fen River[J]. Journal of Shanxi Agricultural University,2000,20(2):138-139.
    [20] 王慧敏, 张峰, 庞春花, 等.汾河流域中下游植物群落物种多样性与土壤因子的关系[J]. 西北植物学报,2013,33(10):2077-2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077

    WANG H M, ZHANG F, PANG C H, et al. Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2077-2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077
    [21] 王爱爱, 冯佳, 谢树莲.汾河中下游浮游藻类群落特征及水质分析[J]. 环境科学,2014,35(3):915-923. doi: 10.13227/j.hjkx.2014.03.015

    WANG A A, FENG J, XIE S L. Phytoplankton community structure and assessment of water quality in the middle and lower reaches of Fenhe River[J]. Environmental Science,2014,35(3):915-923. doi: 10.13227/j.hjkx.2014.03.015
    [22] 朱国清, 赵瑞亮, 胡振平, 等.山西省主要河流鱼类分布及物种多样性分析[J]. 水产学杂志,2014,27(2):38-45. doi: 10.3969/j.issn.1005-3832.2014.02.008

    ZHU G Q, ZHAO R L, HU Z P, et al. Fish distribution and species diversity in major rivers in Shanxi Province[J]. Chinese Journal of Fisheries,2014,27(2):38-45. doi: 10.3969/j.issn.1005-3832.2014.02.008
    [23] 李文华, 赵瑞亮.汾河渔业资源现状及分析[J]. 山西水利,2015,31(5):31-32. doi: 10.3969/j.issn.1004-7042.2015.05.016
    [24] 李安萍, 高晋华.汾河太原段底栖动物群落结构与水质生物学评价[J]. 太原师范学院学报(自然科学版),2016,15(4):81-86.

    LI A P, GAO J H. Community structure of macrozoobenthos and bioassessment of water quality in Fenhe River[J]. Journal of Taiyuan Normal University (Natural Science Edition),2016,15(4):81-86.
    [25] 冯佳, 郭宇宁, 王飞, 等.太原汾河景区浮游植物群落结构及其与环境因子关系分析[J]. 环境科学,2016,37(4):1353-1361.

    FENG J, GUO Y N, WANG F, et al. Relationship between the phytoplankton distribution and environmental factors in Fenhe scenic spot of Taiyuan[J]. Environmental Science,2016,37(4):1353-1361.
    [26] 张淼淼. 汾河上中游植被数量生态研究[D]. 太原: 山西大学, 2017.
    [27] 王亚妮.春夏季汾河二库浮游动物群落特征及其水质评价[J]. 山西水利科技,2018(4):93-96. doi: 10.3969/j.issn.1006-8139.2018.04.030

    WANG Y N. Characteristics of zooplankton community and its water quality evaluation of the Fenhe second reservoir in spring and summer[J]. Shanxi Hydrotechnics,2018(4):93-96. doi: 10.3969/j.issn.1006-8139.2018.04.030
    [28] 王林芳, 李华, 党晋华, 等.汾河上中游流域大型底栖动物群落特征及其多样性评价[J]. 环境化学,2020,39(1):128-137. doi: 10.7524/j.issn.0254-6108.2019021203

    WANG L F, LI H, DANG J H, et al. Characteristics and diversity evaluation of macrobenthos in upper and middle reaches of Fen River Basin[J]. Environmental Chemistry,2020,39(1):128-137. doi: 10.7524/j.issn.0254-6108.2019021203
    [29] US EPA, 2016. Update of ambient water quality criteria for cadmium[R]. United States Environmental Protection Agency 2016.
    [30] NEBEKER A V, CAIRNS M A, ONJUKKA S T, et al. Effect of age on sensitivity of Daphnia magna to cadmium, copper and cyanazine[J]. Environmental Toxicology and Chemistry,1986,5(6):527. doi: 10.1002/etc.5620050604
    [31] BAIRD D J, BARBER I, BRADLEY M, et al. A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna straus[J]. Ecotoxicology and Environmental Safety,1991,21(3):257-265. doi: 10.1016/0147-6513(91)90064-V
    [32] ZHOU T Y, CAO Y, QIN L M, et al. Application of biotic ligand model for the acute toxicity of copper to Daphnia magna in water of Liaohe River and Taihu Lake[J]. Environmental Science,2014,35(5):1962-1967.
    [33] CARLSON A R, NELSON H, HAMMERMEISTER D. Development and validation of site-specific water quality criteria for copper[J]. Environmental Toxicology and Chemistry,1986,5(11):997-1012. doi: 10.1002/etc.5620051108
    [34] BELANGER S E, FARRIS J L, CHERRY D S. Effects of diet, water hardness, and population source on acute and chronic copper toxicity to Ceriodaphnia dubia[J]. Archives of Environmental Contamination and Toxicology,1989,18(4):601-611. doi: 10.1007/BF01055028
    [35] ORIS J T, WINNER R W, MOORE M V. A four-day survival and reproduction toxicity test for Ceriodaphnia dubia[J]. Environmental Toxicology and Chemistry,1991,10(2):217. doi: 10.1002/etc.5620100210
    [36] DIAMOND J M, KOPLISH D E, MCMAHON J III, et al. Evaluation of the water-effect ratio procedure for metals in a riverine system[J]. Environmental Toxicology and Chemistry,1997,16(3):509-520. doi: 10.1002/etc.5620160317
    [37] BELANGER S E, CHERRY D S. Interacting effects of pH acclimation, pH, and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia (Cladocera)[J]. Journal of Crustacean Biology,1990,10(2):225-235.
    [38] SCHUBAUER-BERIGAN M K, DIERKES J R, MONSON P D, et al. PH-DEPENDENT toxicity of cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus[J]. Environmental Toxicology and Chemistry,1993,12(7):1261. doi: 10.1002/etc.5620120715
    [39] WANG W B, CHEN S, WU M, et al. Predicting copper toxicity to Hypophthalmichthys molitrix and Ctenopharyngodon idellus based on biotic ligand model[J]. Environmental Science,2014,35(10):3947-3951.
    [40] 侯俊, 赵芊渊, 王超, 等.应用概率物种敏感度分布法研究太湖铜水生生物水质基准[J]. 生态毒理学报,2015,10(1):191-203.

    HOU J, ZHAO Q Y, WANG C, et al. Deriving aquatic water quality criteria for copper in Taihu Lake by probabilistic species sensitivity distributions[J]. Asian Journal of Ecotoxicology,2015,10(1):191-203.
    [41] 吴丰昌, 冯承莲, 曹宇静, 等.我国铜的淡水生物水质基准研究[J]. 生态毒理学报,2011,6(6):617-628.

    WU F C, FENG C L, CAO Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China[J]. Asian Journal of Ecotoxicology,2011,6(6):617-628.
    [42] 苏海磊. 太湖生物区系特征及其与我国湖泊水质基准推导的关系[D]. 北京: 中国环境科学研究院, 2011.
    [43] di TORO D M, ALLEN H E, BERGMAN H L, et al. Biotic ligand model of the acute toxicity of metals: 1. technical basis[J]. Environmental Toxicology and Chemistry,2001,20(10):2383-2396. doi: 10.1002/etc.5620201034
    [44] RIVERA-DUARTE I, ROSEN G, LAPOTA D, et al. Copper toxicity to larval stages of three marine invertebrates and copper complexation capacity in San Diego Bay, California[J]. Environmental Science & Technology,2005,39(6):1542-1546.
    [45] WANG N, MEBANE C A, KUNZ J L, et al. Influence of dissolved organic carbon on toxicity of copper to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) in acute and chronic water exposures[J]. Environmental Toxicology and Chemistry,2011,30(9):2115-2125. doi: 10.1002/etc.596
    [46] 龚玲兰. 山西汾河河流生态地球化学特征与重金属污染机制[D]. 长沙: 中南大学, 2011.
    [47] 白淘, 吴红燕, 程芳琴, 等.汾河流域水重金属含量与因肿瘤死亡构成比关系[J]. 中国预防医学杂志,2013,14(10):745-747.

    BAI T, WU H Y, CHENG F Q, et al. Correlation between heavy metal content in Fenhe River and death constituent ratio of tumor[J]. Chinese Preventive Medicine,2013,14(10):745-747.
    [48] 张晓琳, 陈洪涛, 姚庆祯, 等.黄河下游水体中重金属元素的季节变化及入海通量研究[J]. 中国海洋大学学报(自然科学版),2013,43(8):69-75. doi: 10.16441/j.cnki.hdxb.2013.08.011

    ZHANG X L, CHEN H T, YAO Q Z, et al. The seasonal changes and flux of trace elements in the lower reaches of Yellow River[J]. Periodical of Ocean University of China,2013,43(8):69-75. doi: 10.16441/j.cnki.hdxb.2013.08.011
    [49] 李磊, 平仙隐, 沈新强.春、夏季长江口溶解态重金属的时空分布特征及其污染评价[J]. 浙江大学学报(理学版),2011,38(5):541-549.

    LI L, PING X Y, SHEN X Q. Spatial and temporal distribution and pollution evaluation of the dissolved heavy metals in the Changjiang Estuary[J]. Journal of Zhejiang University (Science Edition),2011,38(5):541-549.
    [50] 王益平. 珠江流域广东段河水水质和重金属污染特征研究[D]. 广州: 华南理工大学, 2012.
    [51] 梁峰. 我国典型流域重金属的风险评价及六价铬水质基准的推导[D]. 南京: 南京大学, 2011.
    [52] 杨忠芳, 夏学齐, 余涛, 等.湖南洞庭湖水系As和Cd等重金属元素分布特征及输送通量[J]. 现代地质,2008,22(6):897-908. doi: 10.3969/j.issn.1000-8527.2008.06.001

    YANG Z F, XIA X Q, YU T, et al. Distribution and fluxes of as and trace metals in the Dongting Lake water system, Hunan Province, China[J]. Geoscience,2008,22(6):897-908. ⊕ doi: 10.3969/j.issn.1000-8527.2008.06.001
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  146
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13

目录

    /

    返回文章
    返回