Study on water quality criteria of copper in the Fen River based on biotic ligand model
-
摘要:
铜是山西汾河流域主要污染物之一,为准确评估流域铜暴露的生态风险,调查了汾河流域本土水生生物的毒性数据,运用生物配位体模型方法获得汾河铜的保护水生生物短期和长期水质基准值,分别为98.62和29.71 μg/L。依据铜的水质基准进行风险评价,结果显示,汾河水体中铜对水生生物属于无风险水平。
Abstract:Copper is one of the main pollutants in Fen River watershed. In order to accurately evaluate the ecological risk of copper exposure in the watershed, the toxicity data for native aquatic species in the Fen River watershed were investigated. The short-term and long-term water quality criteria of copper for the protection of aquatic organisms in the Fen River were obtained by using the biological ligand model method, which were 98.62 and 29.71 μg/L, respectively. According to the water quality criteria of copper, the risk assessment results showed that copper in Fen River water had no risk to aquatic organisms.
-
Key words:
- water quality criteria /
- Fen River /
- biotic ligand model /
- ecological risk assessment
-
表 1 汾河水质参数及铜浓度
Table 1. Water quality parameters and concentrations of copper in the Fen River
mg/L 采样点 水温1) pH2) 硬度 铜3) DOC Ca2+ Mg2+ Na+ K+ SO42− Cl− 碱度 S1 23.8 8.48 320.29 1.369 10.11 81.94 24.93 75.94 7.39 342.17 105.10 327.60 S2 24.0 8.37 240.22 0.772 10.55 79.78 25.23 69.36 6.92 312.18 96.27 262.08 S3 23.3 8.28 220.20 0.823 10.87 67.95 24.29 86.29 8.36 274.04 110.92 393.12 S4 24.3 8.37 225.20 0.829 11.16 75.82 25.12 70.83 8.44 287.05 102.63 277.20 S5 23.9 8.07 270.24 0.942 9.08 68.21 25.18 62.63 7.97 260.97 85.94 352.80 S6 21.2 8.15 170.15 0.496 7.85 54.42 24.63 46.84 6.06 153.33 25.86 352.80 S7 24.1 8.15 159.14 0.573 10.61 59.77 25.16 66.89 7.54 228.52 82.73 252.00 S8 19.2 8.11 185.17 0.976 8.82 56.94 24.43 66.94 6.34 324.00 156.91 246.96 S9 22 8.13 179.16 0.619 8.12 54.27 24.26 51.55 5.29 169.80 64.34 252.00 S10 21.2 8.16 440.40 0.609 8.53 166.31 19.83 111.29 33.84 605.04 361.39 201.60 S11 20.9 8.35 120.11 0.919 12.17 33.44 25.09 126.21 17.03 201.73 177.37 252.00 S12 20.9 8.33 141.13 1.371 7.67 50.57 24.75 73.59 5.29 230.30 93.47 378.00 S13 20.7 8.34 180.16 0.676 8.16 34.16 24.08 57.06 11.32 121.58 74.62 267.12 S14 21.2 9.05 160.14 0.321 6.35 40.64 24.43 53.49 2.21 180.22 62.52 252.00 S15 21.2 8.31 200.18 0.665 8.20 66.36 24.66 49.13 5.48 93.00 46.29 443.52 中值 21.2 8.31 182.66 0.772 8.82 59.77 24.66 40.34 7.39 230.30 93.47 267.12 1)水温单位为℃;2)pH无量纲;3)铜浓度单位为μg/L。 表 2 采用汾河水体水质参数标准化的铜的急性毒性数据
Table 2. Acute toxicity values of copper standardized by water quality parameters of the Fen River
门 科 属 种 拉丁名 标准化毒性值/(μg/L) 数据来源 节肢动物门 蚤科 蚤属 大型溞 Daphnia magna 268.130 文献[2,11,30-32] 节肢动物门 蚤科 网纹蚤属 模糊网纹蚤 Ceriodaphnia dubia 274.469 文献[33-37] 脊索动物门 鳅科 泥鳅属 泥鳅 Misgurnus anguillicaudatus 826.735 文献[14] 环节动物门 带丝蚓科 带丝蚓属 夹杂带丝蚓 Lumbriculus variegatus 1 044.078 文献[38] 脊索动物门 鲤科 鲢属 鲢鱼 Hypophthalmichtys molitrix 1 637.161 文献[39] 脊索动物门 鲤科 草鱼属 草鱼 Ctenopharyngodon idellus 3 727.492 文献[39] 脊索动物门 鲤科 麦穗鱼属 麦穗鱼 Pseudorasbora parva 4 248.686 文献[14] 节肢动物门 长臂虾科 沼虾属 青虾 Macrobrachium nipponense 5 006.789 文献[14] 脊索动物门 鲤科 鲤属 鲤鱼 Cyprinus carpio 9 137.915 文献[14] 脊索动物门 鲤科 鲫属 鲫鱼 Carassius auratus 12 645.654 文献[14] 节肢动物门 摇蚊科 摇蚊属 羽摇蚊幼虫 Chironomus plumosus 1 380 854.580 文献[14] 表 3 铜对淡水水生生物的短期基准值及模型评价参数
Table 3. Short-term criteria values and model evaluation parameters of copper on freshwater aquatic organisms
模型 数量 HC5/(μg/L) R2 RMSE SSE KSp 短期基准值/(μg/L) Logistic 11 93.325 0.939 9 0.064 6 0.045 9 0.999 2 46.663 Log-logistic 11 197.242 0.964 9 0.049 3 0.026 8 0.999 9 98.621 Normal 11 88.920 0.932 6 0.068 4 0.051 5 0.990 4 44.460 Log-normal 11 191.867 0.964 7 0.049 5 0.027 0 1.000 0 95.933 Extreme value 11 11.885 0.896 2 0.084 9 0.079 3 0.894 2 5.943 表 4 不同水体中铜水质基准与国内外相关基准/标准比较
Table 4. Comparison between water quality criteria of copper in various water bodies and criteria/standards at home and abroad
水体 推导方法 水生生物基准/(μg/L) 短期 长期 汾河(本研究) BLM-SSD 98.62 29.71 太湖[14] BLM-SSD 53.50 16.10 BLM-TPR 32.20 9.70 澜沧江[13] BLM-SSD 26.79 1.11 太湖[40] PSSD 14.57 3.26 中国[41] 评价因子法 2.00 TPR 9.10 5.63 SSD 30.0 9.44 美国[11] TPR 23.38 (180,CMC) 14.8(180, CCC) BLM-TPR 2.34 1.45 加拿大 评价因子法 3.91(180) 澳大利亚 SSD 1.4(30, HRTV) GB 3838—2002 1 000(Ⅱ类~Ⅲ类) 注:TPR为毒性百分数排序法;PSSD为概率物种敏感度分布法;CMC为基准最大浓度;CCC 为基准连续浓度;HRTV为高度可靠触发浓度。 表 5 国内外不同水域的水质参数
Table 5. Water quality parameters of different water bodies at home and abroad
mg/L -
[1] DONNACHIE R L, JOHNSON A C, MOECKEL C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution,2014,194:17-23. doi: 10.1016/j.envpol.2014.07.008 [2] MEADOR J P. The interaction of pH, dissolved organic carbon, and total copper in the determination of ionic copper and toxicity[J]. Aquatic Toxicology,1991,19(1):13-31. doi: 10.1016/0166-445X(91)90025-5 [3] 王伟莉, 焦聪颖, 闫振广, 等.水体硬度对铜和镉生物毒性的影响[J]. 环境工程技术学报,2013,3(3):272-278. doi: 10.3969/j.issn.1674-991X.2013.03.043WANG W L, JIAO C Y, YAN Z G, et al. Effects of water hardness on ecotoxicity of cadmium and copper to aquatic organisms[J]. Journal of Environmental Engineering Technology,2013,3(3):272-278. doi: 10.3969/j.issn.1674-991X.2013.03.043 [4] de SCHAMPHELAERE K A C, JANSSEN C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH[J]. Environmental Science & Technology,2002,36(1):48-54. [5] CRAVEN A M, AIKEN G R, RYAN J N. Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model[J]. Environmental Science & Technology,2012,46(18):9948-9955. [6] NIYOGI S, WOOD C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals[J]. Environmental Science & Technology,2004,38(23):6177-6192. [7] 吕怡兵, 李国刚, 宫正宇, 等.应用BLM模型预测我国主要河流中Cu的生物毒性[J]. 环境科学学报,2006,26(12):2080-2085. doi: 10.3321/j.issn:0253-2468.2006.12.023LÜ Y B, LI G G, GONG Z Y, et al. To predict copper toxicity in China 5 main rivers by using biotic ligand model (BLM)[J]. Acta Scientiae Circumstantiae,2006,26(12):2080-2085. doi: 10.3321/j.issn:0253-2468.2006.12.023 [8] FENG C L, WU F C, ZHENG B H, et al. Biotic ligand models for metals: a practical application in the revision of water quality standards in China[J]. Environmental Science & Technology,2012,46(20):10877-10878. [9] 王春艳. 生物配体模型预测中国典型河流水体铜毒性及其水质基准指标应用研究[D]. 武汉: 武汉大学, 2012. [10] 徐潇. 铜对斜生栅藻急性毒性预测模型: 生物配体模型的建立与验证[D]. 杭州: 浙江工业大学, 2019. [11] US EPA. Aquatic life ambient freshwater quality criteria-copper: EPA-822-R-07-001[S]. Washington DC: United States Environmental Protection Agency Office of Water 4304T, 2007. [12] WU F C, MENG W, ZHAO X L, et al. China embarking on development of its own national water quality criteria system[J]. Environmental Science & Technology,2010,44(21):7992-7993. [13] 陈莎. 澜沧江铜的水质基准与生态风险评价研究[D]. 昆明: 昆明理工大学, 2014. [14] ZHANG Y H, ZANG W C, QIN L M, et al. Water quality criteria for copper based on the BLM approach in the freshwater in China[J]. PLoS One,2017,12(2):e0170105. doi: 10.1371/journal.pone.0170105 [15] 李俊英, 李素清, 韩锦涛.汾河上游流域沿程典型水样点水质变化分析[J]. 中国水土保持科学,2011,9(3):59-64. doi: 10.3969/j.issn.1672-3007.2011.03.011LI J Y, LI S Q, HAN J T. Changes of water quality in typical sites along upstream of Fen River[J]. Science of Soil and Water Conservation,2011,9(3):59-64. doi: 10.3969/j.issn.1672-3007.2011.03.011 [16] 张旭芳. 汾河上游藻类植物群落结构及水质评价[D]. 太原: 山西大学, 2013. [17] 杨国义, 闫雨龙, 何秋生, 等.汾河沉积物中重金属污染及生态风险评价[J]. 太原科技大学学报,2010,31(4):339-344. doi: 10.3969/j.issn.1673-2057.2010.04.020YANG G Y, YAN Y L, HE Q S, et al. Pollution and ecological risk assessment of heavy metals in sediment of Fenhe River[J]. Journal of Taiyuan University of Science and Technology,2010,31(4):339-344. doi: 10.3969/j.issn.1673-2057.2010.04.020 [18] 霍雪萍.汾河流域沉积物中重金属分布及潜在风险评价[J]. 太原科技大学学报,2017,38(5):397-404.HUO X P. Distribution of heavy metals in sediments of Fen River and potential risk evaluation[J]. Journal of Taiyuan University of Science and Technology,2017,38(5):397-404. [19] 高爱枝, 张铁刚, 武如心.汾河临汾断面原生动物种类初步调查[J]. 山西农业大学学报,2000,20(2):138-139.GAO A Z, ZHANG T G, WU R X. Pretimiary investigation about the variery of protozoon in Linfen section of Fen River[J]. Journal of Shanxi Agricultural University,2000,20(2):138-139. [20] 王慧敏, 张峰, 庞春花, 等.汾河流域中下游植物群落物种多样性与土壤因子的关系[J]. 西北植物学报,2013,33(10):2077-2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077WANG H M, ZHANG F, PANG C H, et al. Interrelation between plant species diversity and soil factors in the middle and lower reaches of Fenhe River[J]. Acta Botanica Boreali-Occidentalia Sinica,2013,33(10):2077-2085. doi: 10.7606/j.issn.1000-4025.2013.10.2077 [21] 王爱爱, 冯佳, 谢树莲.汾河中下游浮游藻类群落特征及水质分析[J]. 环境科学,2014,35(3):915-923. doi: 10.13227/j.hjkx.2014.03.015WANG A A, FENG J, XIE S L. Phytoplankton community structure and assessment of water quality in the middle and lower reaches of Fenhe River[J]. Environmental Science,2014,35(3):915-923. doi: 10.13227/j.hjkx.2014.03.015 [22] 朱国清, 赵瑞亮, 胡振平, 等.山西省主要河流鱼类分布及物种多样性分析[J]. 水产学杂志,2014,27(2):38-45. doi: 10.3969/j.issn.1005-3832.2014.02.008ZHU G Q, ZHAO R L, HU Z P, et al. Fish distribution and species diversity in major rivers in Shanxi Province[J]. Chinese Journal of Fisheries,2014,27(2):38-45. doi: 10.3969/j.issn.1005-3832.2014.02.008 [23] 李文华, 赵瑞亮.汾河渔业资源现状及分析[J]. 山西水利,2015,31(5):31-32. doi: 10.3969/j.issn.1004-7042.2015.05.016 [24] 李安萍, 高晋华.汾河太原段底栖动物群落结构与水质生物学评价[J]. 太原师范学院学报(自然科学版),2016,15(4):81-86.LI A P, GAO J H. Community structure of macrozoobenthos and bioassessment of water quality in Fenhe River[J]. Journal of Taiyuan Normal University (Natural Science Edition),2016,15(4):81-86. [25] 冯佳, 郭宇宁, 王飞, 等.太原汾河景区浮游植物群落结构及其与环境因子关系分析[J]. 环境科学,2016,37(4):1353-1361.FENG J, GUO Y N, WANG F, et al. Relationship between the phytoplankton distribution and environmental factors in Fenhe scenic spot of Taiyuan[J]. Environmental Science,2016,37(4):1353-1361. [26] 张淼淼. 汾河上中游植被数量生态研究[D]. 太原: 山西大学, 2017. [27] 王亚妮.春夏季汾河二库浮游动物群落特征及其水质评价[J]. 山西水利科技,2018(4):93-96. doi: 10.3969/j.issn.1006-8139.2018.04.030WANG Y N. Characteristics of zooplankton community and its water quality evaluation of the Fenhe second reservoir in spring and summer[J]. Shanxi Hydrotechnics,2018(4):93-96. doi: 10.3969/j.issn.1006-8139.2018.04.030 [28] 王林芳, 李华, 党晋华, 等.汾河上中游流域大型底栖动物群落特征及其多样性评价[J]. 环境化学,2020,39(1):128-137. doi: 10.7524/j.issn.0254-6108.2019021203WANG L F, LI H, DANG J H, et al. Characteristics and diversity evaluation of macrobenthos in upper and middle reaches of Fen River Basin[J]. Environmental Chemistry,2020,39(1):128-137. doi: 10.7524/j.issn.0254-6108.2019021203 [29] US EPA, 2016. Update of ambient water quality criteria for cadmium[R]. United States Environmental Protection Agency 2016. [30] NEBEKER A V, CAIRNS M A, ONJUKKA S T, et al. Effect of age on sensitivity of Daphnia magna to cadmium, copper and cyanazine[J]. Environmental Toxicology and Chemistry,1986,5(6):527. doi: 10.1002/etc.5620050604 [31] BAIRD D J, BARBER I, BRADLEY M, et al. A comparative study of genotype sensitivity to acute toxic stress using clones of Daphnia magna straus[J]. Ecotoxicology and Environmental Safety,1991,21(3):257-265. doi: 10.1016/0147-6513(91)90064-V [32] ZHOU T Y, CAO Y, QIN L M, et al. Application of biotic ligand model for the acute toxicity of copper to Daphnia magna in water of Liaohe River and Taihu Lake[J]. Environmental Science,2014,35(5):1962-1967. [33] CARLSON A R, NELSON H, HAMMERMEISTER D. Development and validation of site-specific water quality criteria for copper[J]. Environmental Toxicology and Chemistry,1986,5(11):997-1012. doi: 10.1002/etc.5620051108 [34] BELANGER S E, FARRIS J L, CHERRY D S. Effects of diet, water hardness, and population source on acute and chronic copper toxicity to Ceriodaphnia dubia[J]. Archives of Environmental Contamination and Toxicology,1989,18(4):601-611. doi: 10.1007/BF01055028 [35] ORIS J T, WINNER R W, MOORE M V. A four-day survival and reproduction toxicity test for Ceriodaphnia dubia[J]. Environmental Toxicology and Chemistry,1991,10(2):217. doi: 10.1002/etc.5620100210 [36] DIAMOND J M, KOPLISH D E, MCMAHON J III, et al. Evaluation of the water-effect ratio procedure for metals in a riverine system[J]. Environmental Toxicology and Chemistry,1997,16(3):509-520. doi: 10.1002/etc.5620160317 [37] BELANGER S E, CHERRY D S. Interacting effects of pH acclimation, pH, and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia (Cladocera)[J]. Journal of Crustacean Biology,1990,10(2):225-235. [38] SCHUBAUER-BERIGAN M K, DIERKES J R, MONSON P D, et al. PH-DEPENDENT toxicity of cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus[J]. Environmental Toxicology and Chemistry,1993,12(7):1261. doi: 10.1002/etc.5620120715 [39] WANG W B, CHEN S, WU M, et al. Predicting copper toxicity to Hypophthalmichthys molitrix and Ctenopharyngodon idellus based on biotic ligand model[J]. Environmental Science,2014,35(10):3947-3951. [40] 侯俊, 赵芊渊, 王超, 等.应用概率物种敏感度分布法研究太湖铜水生生物水质基准[J]. 生态毒理学报,2015,10(1):191-203.HOU J, ZHAO Q Y, WANG C, et al. Deriving aquatic water quality criteria for copper in Taihu Lake by probabilistic species sensitivity distributions[J]. Asian Journal of Ecotoxicology,2015,10(1):191-203. [41] 吴丰昌, 冯承莲, 曹宇静, 等.我国铜的淡水生物水质基准研究[J]. 生态毒理学报,2011,6(6):617-628.WU F C, FENG C L, CAO Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China[J]. Asian Journal of Ecotoxicology,2011,6(6):617-628. [42] 苏海磊. 太湖生物区系特征及其与我国湖泊水质基准推导的关系[D]. 北京: 中国环境科学研究院, 2011. [43] di TORO D M, ALLEN H E, BERGMAN H L, et al. Biotic ligand model of the acute toxicity of metals: 1. technical basis[J]. Environmental Toxicology and Chemistry,2001,20(10):2383-2396. doi: 10.1002/etc.5620201034 [44] RIVERA-DUARTE I, ROSEN G, LAPOTA D, et al. Copper toxicity to larval stages of three marine invertebrates and copper complexation capacity in San Diego Bay, California[J]. Environmental Science & Technology,2005,39(6):1542-1546. [45] WANG N, MEBANE C A, KUNZ J L, et al. Influence of dissolved organic carbon on toxicity of copper to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) in acute and chronic water exposures[J]. Environmental Toxicology and Chemistry,2011,30(9):2115-2125. doi: 10.1002/etc.596 [46] 龚玲兰. 山西汾河河流生态地球化学特征与重金属污染机制[D]. 长沙: 中南大学, 2011. [47] 白淘, 吴红燕, 程芳琴, 等.汾河流域水重金属含量与因肿瘤死亡构成比关系[J]. 中国预防医学杂志,2013,14(10):745-747.BAI T, WU H Y, CHENG F Q, et al. Correlation between heavy metal content in Fenhe River and death constituent ratio of tumor[J]. Chinese Preventive Medicine,2013,14(10):745-747. [48] 张晓琳, 陈洪涛, 姚庆祯, 等.黄河下游水体中重金属元素的季节变化及入海通量研究[J]. 中国海洋大学学报(自然科学版),2013,43(8):69-75. doi: 10.16441/j.cnki.hdxb.2013.08.011ZHANG X L, CHEN H T, YAO Q Z, et al. The seasonal changes and flux of trace elements in the lower reaches of Yellow River[J]. Periodical of Ocean University of China,2013,43(8):69-75. doi: 10.16441/j.cnki.hdxb.2013.08.011 [49] 李磊, 平仙隐, 沈新强.春、夏季长江口溶解态重金属的时空分布特征及其污染评价[J]. 浙江大学学报(理学版),2011,38(5):541-549.LI L, PING X Y, SHEN X Q. Spatial and temporal distribution and pollution evaluation of the dissolved heavy metals in the Changjiang Estuary[J]. Journal of Zhejiang University (Science Edition),2011,38(5):541-549. [50] 王益平. 珠江流域广东段河水水质和重金属污染特征研究[D]. 广州: 华南理工大学, 2012. [51] 梁峰. 我国典型流域重金属的风险评价及六价铬水质基准的推导[D]. 南京: 南京大学, 2011. [52] 杨忠芳, 夏学齐, 余涛, 等.湖南洞庭湖水系As和Cd等重金属元素分布特征及输送通量[J]. 现代地质,2008,22(6):897-908. doi: 10.3969/j.issn.1000-8527.2008.06.001YANG Z F, XIA X Q, YU T, et al. Distribution and fluxes of as and trace metals in the Dongting Lake water system, Hunan Province, China[J]. Geoscience,2008,22(6):897-908. ⊕ doi: 10.3969/j.issn.1000-8527.2008.06.001