Evaluation of reduction rate of rainwater runoff pollution load in low impact development community based on rainfall grade differentiation method
-
摘要:
为定量评估低影响开发(LID)技术对雨水径流污染负荷的削减率,选取嘉兴市柳岸禾丰小区作为LID小区,与其临近且下垫面类型相似的浅水湾小区作为传统小区,同步监测小区的外排水量和TP浓度,根据降水等级分异计算2个小区同等降水情景下单位面积污染负荷量,再以传统小区的单位面积污染负荷量为基准核算LID小区的雨水径流污染负荷削减率。结果表明:小雨时,LID设施可消纳其服务范围内的所有径流及所携带的污染物,污染负荷削减率达100%;当降水量增至超过LID设施功能阈值时,污染物削减率开始降低,中雨时降至67%,大雨时降至46%,年均雨水径流污染负荷削减率约为66%。整体来看,LID设施雨水径流污染负荷削减率表现出明显的降水等级差异。采用降水等级分异的方法能够减少降水等级所造成的误差,确保评估结果的精准程度,为小区LID设施建设提供可靠的决策依据。
-
关键词:
- 低影响开发(LID)小区 /
- 传统小区 /
- 降水等级分异 /
- 雨水径流;负荷削减率
Abstract:In order to quantitatively evaluate the reduction rate of low impact development (LID) techniques on rainwater runoff pollution load, Liuan Hefeng Community in Jiaxing City was selected as the LID community, and Bay Community adjacent to it with similar underlying surface types was selected as the traditional community. The external discharge and TP concentration of the communities were monitored simultaneously. Then, the pollution load per unit area of the two communities was calculated according to the rainfall level differentiation under the same rainfall situation. Finally, the reduction rate of rainwater runoff pollution load of LID community was calculated based on the pollution load of unit area of traditional community. The results showed that: In light rain, LID facilities absorbed all the runoff and pollutants within their service range, and achieved a 100% reduction rate of pollution load. With the increase of rainfall, runoff and pollutants carried by it gradually exceeded the functional threshold of LID facilities, and the pollutant abatement rate began to decrease. In moderate rain the reduction rate dropped to 67% and in heavy rain it dropped to 46%. The average annual reduction rate of rainwater runoff pollution load was about 66%. On the whole, the reduction rate of rainwater runoff pollution load of LID facilities showed obvious differences in rainfall levels. The method of rainfall level differentiation could reduce the error caused by rainfall levels and ensure the accuracy of evaluation results, which provided a reliable decision-making basis for LID facility construction in communities.
-
表 1 嘉兴市典型年份(2014年)降水等级划分
Table 1. Rainfall grade division of Jiaxing in typical year (2014)
降水等级 日降水量/mm 累计降水量/mm 降水天数/d 大雨(含暴雨) 25~49.9 577.3 15 中雨 10~24.9 371.1 24 小雨 ≤10 320.9 97 表 2 小雨情景下传统小区污染负荷核算
Table 2. Pollution load calculation of traditional communities under light rain
时间/min 间隔时间段
流量/LTP平均
浓度/(mg/L)总污染
负荷量/mg0 76.20 0.12 9.14 5 121.20 0.23 27.88 10 126.30 0.09 11.37 20 186.30 0.13 24.22 30 49.80 0.15 7.47 60 720.60 0.19 136.91 90 261.90 0.15 39.29 120 318.60 0.11 35.05 合计 1 860.90 291.32 表 3 中雨情景下LID小区及传统小区污染负荷核算
Table 3. Pollution load accounting of LID and traditional communities under moderate rain
时间/min 间隔时间段流量/L TP浓度/(mg/L) 总污染负荷量/mg LID小区 传统小区 LID小区 传统小区 LID小区 传统小区 0 797.88 1 080.72 0.13 0.15 106.12 166.43 5 472.32 1 442.34 0.11 0.12 53.37 174.52 10 460.50 919.86 0.10 0.12 46.05 113.14 20 443.34 1 452.18 0.10 0.12 44.33 171.36 30 1 624.98 3 966.48 0.11 0.13 183.62 511.68 60 658.86 3 456.66 0.08 0.10 52.71 342.21 90 45.18 10.59 0.10 0.10 4.52 1.09 120 4.14 6.12 0.09 0.11 0.37 0.64 合计 4 507.20 12 334.95 491.10 1 481.07 表 4 大雨情景下LID小区及传统小区污染负荷核算
Table 4. Pollution load calculation of LID community and traditional communities under heavy rain
时间/min 间隔时间段流量/L TP平均浓度/(mg/L) 总污染负荷量/mg LID小区 传统小区 LID小区 传统小区 LID小区 传统小区 0 1.56 8 723.10 0.14 0.16 0.22 1 369.53 5 1 745.34 13 797.30 0.10 0.14 179.77 1 973.01 10 4 764.30 16 271.10 0.10 0.15 466.90 2 473.21 20 15 042.84 56 027.40 0.13 0.14 2 015.74 7 675.75 40 41 128.86 112 511.40 0.14 0.19 5 922.56 21 264.65 70 61 743.72 108 763.50 0.16 0.18 10 125.97 19 251.14 100 50 469.90 63 590.76 0.15 0.16 7 570.49 10 301.70 130 47 798.58 56 109.96 0.16 0.17 7 695.57 9 258.14 160 17 954.64 21 564.48 0.15 0.17 2 729.11 3 665.96 合计 240 649.74 457 359.00 36 706.32 77 233.10 -
[1] 住房与城乡建设部. 海绵城市建设技术指南: 低影响开发雨水系统构建(试行)[S/OL]. [2021-08-10].https://img6.ccement.com/2015/07/20/a9ebe6eb.pdf. [2] 蒲贵兵, 古霞, 蔡岚, 等.“十四五”海绵城市建设发展策略[J]. 净水技术,2021,40(3):1-8.PU G B, GU X, CAI L, et al. Development strategy of sponge city construction according to the 14th Five-year Plan[J]. Water Purification Technology,2021,40(3):1-8. [3] 杨正, 李俊奇, 王文亮, 等.对低影响开发与海绵城市的再认识[J]. 环境工程,2020,38(4):10-15.YANG Z, LI J Q, WANG W L, et al. The advanced recognition of low impact development and sponge city construction[J]. Environmental Engineering,2020,38(4):10-15. [4] 章林伟.中国海绵城市建设与实践[J]. 给水排水,2018,54(11):1-5. doi: 10.3969/j.issn.1002-8471.2018.11.001ZHANG L W. Sponge city construction and practice in China[J]. Water & Wastewater Engineering,2018,54(11):1-5. doi: 10.3969/j.issn.1002-8471.2018.11.001 [5] COFFMAN L S. Low impact development creating a storm of controversy[J]. Water Resources Impact,2001,3(6):7-9. [6] US EPA. Reducing stormwater costs through lowimpact development (LID) strategies and practices[EB/OL]. (2021-06-14).http://www.epa.gov/nps/lid. [7] 胡爱兵, 丁年, 任心欣. 低影响开发原理、应用和实例简介[C]//多元与包容: 2012中国城市规划年会论文集. 北京: 中国城市规划学会, 2012: 480-494. [8] 孙佩锦.低影响开发应用案例介绍[J]. 住宅与房地产,2017(5):229. [9] 贾续.国外雨洪控制与管理体系概述[J]. 职业时空,2013,9(7):120-122.JIA X. Outside the rain flood control and management system overview[J]. Career Horizon,2013,9(7):120-122. [10] HU M C, ZHANG X Q, LI Y, et al. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area[J]. Journal of Cleaner Production,2019,222:373-380. doi: 10.1016/j.jclepro.2019.03.044 [11] 高学珑, 陈奕, 蔡辉艺, 等.城市道路雨水排放系统构建及要点研究[J]. 给水排水,2021,57(6):36-42.GAO X L, CHEN Y, CAI H Y, et al. Research on construction and key points of urban road rainwater drainage system[J]. Water & Wastewater Engineering,2021,57(6):36-42. [12] 孙倩莹, 高艳妮, 张林波, 等.基于土地利用的厦门市生态水文调节服务评估[J]. 环境科学研究,2019,32(1):66-73.SUN Q Y, GAO Y N, ZHANG L B, et al. Assessment of ecological and hydrological regulation service of land use in Xiamen City[J]. Research of Environmental Sciences,2019,32(1):66-73. [13] 冯新伟, 林齐, 段亮, 等.辽河保护区河道防洪能力提升工程研究[J]. 环境工程技术学报,2013,3(6):493-497. doi: 10.3969/j.issn.1674-991X.2013.06.076FENG X W, LIN Q, DUAN L, et al. Research on flood control capacity improvement engineering for Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2013,3(6):493-497. doi: 10.3969/j.issn.1674-991X.2013.06.076 [14] 朱文彬, 孙倩莹, 李付杰, 等.厦门市城市绿地雨洪减排效应评价[J]. 环境科学研究,2019,32(1):74-84.ZHU W B, SUN Q Y, LI F J, et al. Assessment of the effect of urban green space landscape on reduction of storm water runoff in Xiamen City[J]. Research of Environmental Sciences,2019,32(1):74-84. [15] 李晓洁, 刘瑞霞, 傲德姆, 等.黑臭水体综合整治案例分析: 以海口市美舍河为例[J]. 环境工程技术学报,2020,10(5):733-739. doi: 10.12153/j.issn.1674-991X.20200109LI X J, LIU R X, AO D M, et al. Comprehensive treatment for black and odorous water body: a case study of Meishe River in Haikou City[J]. Journal of Environmental Engineering Technology,2020,10(5):733-739. doi: 10.12153/j.issn.1674-991X.20200109 [16] 《海绵城市建设绩效评价与考核办法(试行)》发布[J]. 建设科技, 2015(14): 6. [17] 毛月鹏, 汪志荣, 史怡然, 等.生物滞留池对屋面径流基本污染物的控制[J]. 环境污染与防治,2020,42(1):29-34.MAO Y P, WANG Z R, SHI Y R, et al. Control of basic pollutants in roof runoff by bioretention cells[J]. Environmental Pollution & Control,2020,42(1):29-34. [18] 张庭秀, 李田.浅基质层干植草沟对道路径流中PAHs的去除效果[J]. 中国给水排水,2021,37(11):96-103.ZHANG T X, LI T. Removal efficiency of polycyclic aromatic hydrocarbons in road runoff by dry grass swale with shallow substrate layer[J]. China Water & Wastewater,2021,37(11):96-103. [19] 李晗, 王建龙, 冯萃敏, 等.低影响开发建筑小区雨水控制效果监测与评估[J]. 环境工程,2020,38(4):145-150.LI H, WANG J L, FENG C M, et al. Monitoring and evaluation of stormwater control effect via low-impact development in residential districts[J]. Environmental Engineering,2020,38(4):145-150. [20] 毕军鹏, 程军蕊, 王侃, 等.城市低影响开发对雨水径流氮污染物的控制效应: 以宁波海绵城市试点区域为例[J]. 宁波大学学报(理工版),2020,33(6):70-78.BI J P, CHENG J R, WANG K, et al. Control effects of low impact development in urban area on rainwater nitrogen pollution: a case study of the pilot area of sponge city construction in Ningbo[J]. Journal of Ningbo University (Natural Science & Engineering Edition),2020,33(6):70-78. [21] 李佳. 海绵城市地块汇水区面源污染传输及控制效果研究[D]. 青岛: 青岛大学, 2020. [22] 马学琳, 李洪波, 罗宁, 等.城市地表径流污染研究[J]. 中国资源综合利用,2021,39(5):112-114. doi: 10.3969/j.issn.1008-9500.2021.05.034MA X L, LI H B, LUO N, et al. Research on urban surface runoff pollution[J]. China Resources Comprehensive Utilization,2021,39(5):112-114. doi: 10.3969/j.issn.1008-9500.2021.05.034 [23] 王生愿, 余黎, 陈小龙, 等.基于在线监测和SWMM模型的合流制排水体制系统化提升方案评估研究[J]. 中国环境监测,2021,37(1):103-111.WANG S Y, YU L, CHEN X L, et al. Evaluation of systematic upgrade scheme for combined drainage system based on online monitoring and SWMM[J]. Environmental Monitoring in China,2021,37(1):103-111. [24] 赵明.不同业界暴雨径流计算的异与同[J]. 城市道桥与防洪,2020(10):100-101.ZHAO M. Differences and similarities of storm runoff calculation in different industries[J]. Urban Roads Bridges & Flood Control,2020(10):100-101. [25] 任兵战.住宅型海绵项目设施运行效果监测研究[J]. 城市建筑,2019,16(20):174-176. ⊗ doi: 10.3969/j.issn.1673-0232.2019.20.060