Isolation, identification and degradation conditions optimization of a new bacterial strain degrading chlortetracycline
-
摘要:
四环素类抗生素在畜牧业中的广泛应用对人类和动物具有潜在的危害。以金霉素制药厂污泥为原料,从中分离出一株能够高效降解金霉素的纯菌株,命名为ZL-1。经形态学观察、革兰氏染色和16S rDNA鉴定,表明该菌株属于革兰氏阴性菌、不动杆菌属(Acinetobacter sp.)。通过正交试验研究了碳源、温度、pH、初始金霉素浓度、接种量对菌株ZL-1降解金霉素效果的影响。结果表明,温度、接种量和初始金霉素浓度对该菌株降解金霉素的影响较大。以正交试验的结果为依据,采用响应面法优化该菌株对金霉素的降解条件,确定了最优条件为金霉素初始浓度134.864 mg/L,温度34.409 ℃,接种量5.223%(体积比)。在最佳降解条件下,金霉素的实际降解率为93.70%,预测降解率为93.723%,表明预测模型的预测值与实际的降解效果较贴合。
Abstract:The extensive application of tetracycline antibiotics in stock farming has brought potential hazards to people and animals. A well-functioning chlortetracycline-degrading pure bacteria strain was isolated from the sludge of the chlortetracycline pharmaceutical factory. The strain was named ZL-1 and identified to belong to gram-negative bacteria and Acinetobacter sp. based on the morphological observation, gram staining and 16S rDNA sequencing identification. Furthermore, the effects of carbon source, temperature, pH, initial chlortetracycline concentration and inoculation amount on the chlortetracycline degradation performance of ZL-1 were analyzed by the orthogonal test. The results showed that the temperature, inoculation amount, and initial chlortetracycline concentration had a greater impact on the chlortetracycline degradation efficiency. Based on the results of the orthogonal test, the chlortetracycline degradation conditions of the bacteria were optimized by the response surface method, and the optimal conditions for degrading chlortetracycline were determined. The optimal conditions were the initial chlortetracycline concentration 134.864 mg/L, the temperature 34.409 ℃, and the inoculation concentration 5.223%. Under the optimal conditions, the actual degradation efficiency of chlortetracycline was 93.70%, whereas the predictive value was 93.723%, indicating that the proposed model had high accuracy.
-
表 1 试验仪器
Table 1. Experimental apparatus
试验仪器 型号 生产厂家 立式压力蒸汽灭菌锅 YM5A 上海三申医疗器械有限公司 恒温培养摇床 ZWY-2102C 上海智城分析仪器制造有限公司 生化培养箱 LRH-150F 上海一恒科学仪器有限公司 净化工作台 SW-CJ-2FD 苏州净化设备有限公司 冷冻冰箱 BC-93TMPF 青岛海尔股份有限公司 高速台式冷冻离心机 TGL-16 湘仪离心机仪器有限公司 冷冻干燥机 BK-FD10T 山东博科科学仪器有限公司 SEM场发射
扫描电镜G300 德国Zeiss有限公司 扫描电镜溅射镀膜仪 SC7620 英国Quorum有限公司 显微镜 N-400M 宁波永新光学股份有限公司 PCR MiniAmp™ Plus Thermo Fisher Scientific有限公司 紫外可见分光光度计 UV 756CRT 上海佑科仪表有限公司 液相色谱仪 1200 Agilent Technologies有限公司 表 2 正交试验设计
Table 2. Orthogonal test design
水平 因素 pH 温度/℃ 金霉素初始浓度/(mg/L) 碳源种类 接种量/% 1 5 20 20 CH3COONa 1 2 6 25 50 淀粉 2 3 7 30 100 柠檬酸钠 4 4 8 35 150 丁二酸钠 6 5 9 40 200 葡萄糖 8 表 3 正交试验结果
Table 3. Orthogonal test results
试验序号 因素水平 降解
率/%pH 温度 金霉素初始
浓度碳源
种类接种
量空白
对照试验1 1 1 1 1 1 1 53.51 试验2 1 2 2 2 2 2 58.83 试验3 1 3 3 3 3 3 71.53 试验4 1 4 4 4 4 4 70.75 试验5 1 5 5 5 5 5 61.11 试验6 2 1 2 3 4 5 63.79 试验7 2 2 3 4 5 1 71.54 试验8 2 3 4 5 1 2 63.41 试验9 2 4 5 1 2 3 64.61 试验10 2 5 1 2 3 4 58.23 试验11 3 1 3 5 2 4 60.88 试验12 3 2 4 1 3 5 69.93 试验13 3 3 5 2 4 1 61.33 试验14 3 4 1 3 5 2 64.26 试验15 3 5 2 4 1 3 51.77 试验16 4 1 4 2 5 3 57.34 试验17 4 2 5 3 1 4 63.66 试验18 4 3 1 4 2 5 64.48 试验19 4 4 2 5 3 1 66.38 试验20 4 5 3 1 4 3 59.96 试验21 5 1 5 4 3 2 57.76 试验22 5 2 1 5 4 3 63.08 试验23 5 3 2 1 5 4 74.02 试验24 5 4 3 2 1 5 63.73 试验25 5 5 4 3 2 1 52.14 表 4 各因素不同水平下降解率的均值及极差
Table 4. Mean and extreme difference of degradation efficiency in different levels of factors
因素 不同水平下降解率的均值 极差 水平1 水平2 水平3 水平4 水平5 pH 63.146 64.316 61.634 62.364 62.146 2.682 温度 58.656 65.408 66.954 65.946 56.642 10.312 金霉素初始
浓度60.712 62.958 65.528 62.714 61.694 4.816 碳源种类 64.406 59.892 63.076 63.260 62.972 4.514 接种量 59.216 60.188 64.766 63.782 63.782 6.438 空白对照 60.980 61.065 61.382 65.508 64.608 4.528 表 5 Box-Behnken试验因素与水平
Table 5. Box-behnken test factors and levels
因素 因素水平 −1 0 1 A/℃ 25 30 35 B/(mg/L) 50 100 150 C/% 2 4 6 表 6 菌株ZL-1响应面分析结果
Table 6. Response surface analysis result of strain ZL-1
标准顺序 试验顺序 因素A 因素B 因素C 降解率/% 1 11 2 2 3 68.307 2 7 4 2 3 94.250 3 8 2 4 3 70.318 4 17 4 4 3 92.644 5 15 2 3 2 72.953 6 6 4 3 2 93.851 7 10 2 3 4 84.010 8 4 4 3 4 97.152 9 9 3 2 2 89.965 10 16 3 4 2 88.469 11 13 3 2 4 95.401 12 2 3 4 4 90.353 13 14 3 3 3 92.039 14 3 3 3 3 92.048 15 12 3 3 3 91.077 16 5 3 3 3 91.628 17 1 3 3 3 91.512 表 7 菌株ZL-1降解金霉素的最小拟二乘法分析
Table 7. Minimum quasi-multiplied method for degrading chlortetracycline of strain ZL-1
项目 平方和 自由度 均方 F P 显著性 模型 1215.280 9 135.030 24.750 0.0002 A 846.860 1 846.860 155.220 <0.0001 *** B 4.710 1 4.710 0.860 0.3837 C 58.740 1 58.740 10.770 0.0135 ** AB 3.270 1 3.270 0.600 0.4643 AC 15.040 1 15.040 2.760 0.1408 BC 3.160 1 3.160 0.580 0.4718 A2 216.350 1 216.350 39.650 0.0004 *** B2 40.790 1 40.790 7.480 0.0292 ** C2 26.300 1 26.300 4.820 0.0642 * 残差 38.190 7 5.460 失拟相 37.530 3 12.510 76.140 0.0006 纯误差 0.660 4 0.160 总和 1253.480 16 注:***为极显著,**为较显著,*为显著,空白为不显著。 -
[1] 高立红, 史亚利, 厉文辉, 等.抗生素环境行为及其环境效应研究进展[J]. 环境化学,2013,32(9):1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry,2013,32(9):1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004 [2] 秦松岩, 李杭, 山丹, 等.四环素类抗生素生产废水处理现状与研究进展[J]. 天津理工大学学报,2016,32(2):50-54. doi: 10.3969/j.issn.1673-095X.2016.002.012QIN S Y, LI H, SHAN D, et al. The present situation and research progress in the treatment of tetracycline antibiotic manufacturing wastewater[J]. Journal of Tianjin University of Technology,2016,32(2):50-54. doi: 10.3969/j.issn.1673-095X.2016.002.012 [3] 吴晓霞, 周晓燕, 李久彤, 等.基于背景荧光猝灭-免疫层析法黄曲霉毒素B1检测卡的研制[J]. 分析试验室,2017,36(2):189-193.WU X X, ZHOU X Y, LI J T, et al. Determination card of AFB1 based on background fluorescence quenching immunochromatographic assay[J]. Chinese Journal of Analysis Laboratory,2017,36(2):189-193. [4] GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research,2013,47(6):2050-2064. doi: 10.1016/j.watres.2013.01.020 [5] LIN J S, PAN H Y, LIU S M, et al. Effects of light and microbial activity on the degradation of two fluoroquinolone antibiotics in pond water and sediment[J]. Journal of Environmental Science and Health, Part B,2010,45(5):456-465. doi: 10.1080/03601231003800222 [6] ZHUANG M, ACHMON Y, CAO Y P, et al. Distribution of antibiotic resistance genes in the environment[J]. Environmental Pollution,2021,285:117402. doi: 10.1016/j.envpol.2021.117402 [7] 卢运战, 祁克宗, 朱良强.四环素类药物残留检测方法研究进展[J]. 家禽科学,2006(10):36-39. doi: 10.3969/j.issn.1673-1085.2006.10.017 [8] 代安娜, 陈硕.基于生物传感技术的新型环境污染物多指标分析仪[J]. 科技创新与品牌,2012(5):77. [9] CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality,2009,38(3):1086-1108. doi: 10.2134/jeq2008.0128 [10] 宋冉冉, 国晓春, 卢少勇, 等.东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27SONG R R, GUO X C, LU S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake Basin[J]. Research of Environmental Sciences,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27 [11] 沈怡雯, 黄智婷, 谢冰.抗生素及其抗性基因在环境中的污染、降解和去除研究进展[J]. 应用与环境生物学报,2015,21(2):181-187.SHEN Y W, HUANG Z T, XIE B. Advances in research of pollution, degradation and removal of antibiotics and antibiotic resistance genes in the environment[J]. Chinese Journal of Applied and Environmental Biology,2015,21(2):181-187. [12] 张惠东, 刘玉忠.水中四环素类污染物及吸附去除研究进展[J]. 科技创新与应用,2020(28):6-9,13.ZHANG H D, LIU Y Z. Research progress of tetracycline pollutants in water and their adsorption and removal[J]. Technology Innovation and Application,2020(28):6-9,13. [13] PENG L, REN Y Q, GU J D, et al. Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system[J]. Environmental Science and Pollution Research,2014,21(12):7631-7640. doi: 10.1007/s11356-014-2677-2 [14] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology,2017,246:150-159. doi: 10.1016/j.biortech.2017.07.150 [15] ZHAO C, DENG H P, LI Y, et al. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation[J]. Journal of Hazardous Materials,2010,176(1/2/3):884-892. [16] RIMOLDI L, MERONI D, CAPPELLETTI G, et al. Green and low cost tetracycline degradation processes by nanometric and immobilized TiO2 systems[J]. Catalysis Today,2017,281:38-44. doi: 10.1016/j.cattod.2016.08.015 [17] YUAN C, HUNG C H, LI H W, et al. Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light: effect of doping content and pH[J]. Chemosphere,2016,155:471-478. doi: 10.1016/j.chemosphere.2016.04.055 [18] DALMÁZIO I, ALMEIDA M O, AUGUSTI R, et al. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2007,18(4):679-687. doi: 10.1016/j.jasms.2006.12.001 [19] PEI S Z, SHEN C, ZHANG C H, et al. Characterization of the interfacial joule heating effect in the electrochemical advanced oxidation process[J]. Environmental Science & Technology,2019,53(8):4406-4415. [20] MARTÍNEZ-HUITLE C A, PANIZZA M. Electrochemical oxidation of organic pollutants for wastewater treatment[J]. Current Opinion in Electrochemistry,2018,11:62-71. doi: 10.1016/j.coelec.2018.07.010 [21] ZHAO X D, LI X J, ZHANG X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: a performance assessment[J]. Bioelectrochemistry,2019,129:26-33. doi: 10.1016/j.bioelechem.2019.04.016 [22] ZHANG J C, GIORNO L, DRIOLI E. Study of a hybrid process combining PACs and membrane operations for antibiotic wastewater treatment[J]. Desalination,2006,194(1/2/3):101-107. [23] 张浩, 罗义, 周启星.四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报,2008,27(2):407-413. doi: 10.3321/j.issn:1672-2043.2008.02.001ZHANG H, LUO Y, ZHOU Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science,2008,27(2):407-413. doi: 10.3321/j.issn:1672-2043.2008.02.001 [24] 敖蒙蒙, 魏健, 陈忠林, 等.四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096AO M M, WEI J, CHEN Z L, et al. Research progress on environmental behaviors and ecotoxicity of tetracycline antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096 [25] 王梓竹, 刘泽, 胡胜杰, 等.四环素降解菌的筛选及其降解特性研究[J]. 饲料研究,2020,43(10):64-68. doi: 10.13557/j.cnki.issn1002-2813.2020.10.017WANG Z Z, LIU Z, HU S J, et al. Screening and degradation characteristics of tetracycline-degrading bacteria[J]. Feed Research,2020,43(10):64-68. doi: 10.13557/j.cnki.issn1002-2813.2020.10.017 [26] 陶美, 贺玉龙, 王林, 等.四环素降解菌的筛选及其降解特性[J]. 应用与环境生物学报,2018,24(2):384-389. doi: 10.19675/j.cnki.1006-687x.2017.06040TAO M, HE Y L, WANG L, et al. Screening and degradation characteristics of a tetracycline-degrading bacterial strain[J]. Chinese Journal of Applied and Environmental Biology,2018,24(2):384-389. doi: 10.19675/j.cnki.1006-687x.2017.06040 [27] 赵永斌. 3种四环素类抗生素降解菌的筛选及降解特性的研究[D]. 太谷: 山西农业大学, 2015. [28] 郑茂佳. 四环素降解菌的筛选及其对养殖废水的净化能力[D]. 大连: 辽宁师范大学, 2018. [29] LI W, ZHAO L C, SUN Y S, et al. Optimization of pressurized liquid extraction of three major acetophenones from Cynanchum bungei using a Box-Behnken design[J]. International Journal of Molecular Sciences,2012,13(11):14533-14544. [30] AGRAWAL M, SARAF S, PRADHAN M, et al. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design[J]. Biomedicine & Pharmacotherapy,2021,141:111919. □