留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一株金霉素降解新菌株的分离鉴定及降解条件优化

赵慈 张茹 李思琦 李文进 宋哲华 王晓慧 沈鹏

赵慈,张茹,李思琦,等.一株金霉素降解新菌株的分离鉴定及降解条件优化[J].环境工程技术学报,2022,12(6):2082-2088 doi: 10.12153/j.issn.1674-991X.20210430
引用本文: 赵慈,张茹,李思琦,等.一株金霉素降解新菌株的分离鉴定及降解条件优化[J].环境工程技术学报,2022,12(6):2082-2088 doi: 10.12153/j.issn.1674-991X.20210430
ZHAO C,ZHANG R,LI S Q,et al.Isolation, identification and degradation conditions optimization of a new bacterial strain degrading chlortetracycline[J].Journal of Environmental Engineering Technology,2022,12(6):2082-2088 doi: 10.12153/j.issn.1674-991X.20210430
Citation: ZHAO C,ZHANG R,LI S Q,et al.Isolation, identification and degradation conditions optimization of a new bacterial strain degrading chlortetracycline[J].Journal of Environmental Engineering Technology,2022,12(6):2082-2088 doi: 10.12153/j.issn.1674-991X.20210430

一株金霉素降解新菌株的分离鉴定及降解条件优化

doi: 10.12153/j.issn.1674-991X.20210430
基金项目: 国家重点研发计划项目(2018YFC1801501)
详细信息
    作者简介:

    赵慈(1983—),女,工程师,硕士,研究方向为环境规划、评价与管理,zhaoci07@163.com

    通讯作者:

    沈鹏(1977—),男,工程师,主要从事区域循环经济、生态工业和清洁生产的理论与方法研究,shenpeng@craes.org.cn

  • 中图分类号: X172

Isolation, identification and degradation conditions optimization of a new bacterial strain degrading chlortetracycline

  • 摘要:

    四环素类抗生素在畜牧业中的广泛应用对人类和动物具有潜在的危害。以金霉素制药厂污泥为原料,从中分离出一株能够高效降解金霉素的纯菌株,命名为ZL-1。经形态学观察、革兰氏染色和16S rDNA鉴定,表明该菌株属于革兰氏阴性菌、不动杆菌属(Acinetobacter sp.)。通过正交试验研究了碳源、温度、pH、初始金霉素浓度、接种量对菌株ZL-1降解金霉素效果的影响。结果表明,温度、接种量和初始金霉素浓度对该菌株降解金霉素的影响较大。以正交试验的结果为依据,采用响应面法优化该菌株对金霉素的降解条件,确定了最优条件为金霉素初始浓度134.864 mg/L,温度34.409 ℃,接种量5.223%(体积比)。在最佳降解条件下,金霉素的实际降解率为93.70%,预测降解率为93.723%,表明预测模型的预测值与实际的降解效果较贴合。

     

  • 图  1  初筛降解菌株对金霉素的降解率

    Figure  1.  Degradation efficiency map of primary screened strains

    图  2  菌株ZL-1形态

    Figure  2.  Morphological map of strain ZL-1

    图  3  菌株ZL-1系统发育树

    Figure  3.  Phylogenetic tree of strain ZL-1

    图  4  各因素及其交互作用的响应面

    Figure  4.  Factors and their interaction in response surface chart

    表  1  试验仪器

    Table  1.   Experimental apparatus

    试验仪器型号生产厂家
    立式压力蒸汽灭菌锅YM5A上海三申医疗器械有限公司
    恒温培养摇床ZWY-2102C上海智城分析仪器制造有限公司
    生化培养箱LRH-150F上海一恒科学仪器有限公司
    净化工作台SW-CJ-2FD苏州净化设备有限公司
    冷冻冰箱BC-93TMPF青岛海尔股份有限公司
    高速台式冷冻离心机TGL-16湘仪离心机仪器有限公司
    冷冻干燥机BK-FD10T山东博科科学仪器有限公司
    SEM场发射
    扫描电镜
    G300德国Zeiss有限公司
    扫描电镜溅射镀膜仪SC7620英国Quorum有限公司
    显微镜N-400M宁波永新光学股份有限公司
    PCRMiniAmp™ PlusThermo Fisher Scientific有限公司
    紫外可见分光光度计UV 756CRT上海佑科仪表有限公司
    液相色谱仪1200Agilent Technologies有限公司
    下载: 导出CSV

    表  2  正交试验设计

    Table  2.   Orthogonal test design

    水平因素
    pH温度/℃金霉素初始浓度/(mg/L)碳源种类接种量/%
    152020CH3COONa1
    262550淀粉2
    3730100柠檬酸钠4
    4835150丁二酸钠6
    5940200葡萄糖8
    下载: 导出CSV

    表  3  正交试验结果

    Table  3.   Orthogonal test results

    试验序号因素水平降解
    率/%
    pH温度金霉素初始
    浓度
    碳源
    种类
    接种
    空白
    对照
    试验111111153.51
    试验212222258.83
    试验313333371.53
    试验414444470.75
    试验515555561.11
    试验621234563.79
    试验722345171.54
    试验823451263.41
    试验924512364.61
    试验1025123458.23
    试验1131352460.88
    试验1232413569.93
    试验1333524161.33
    试验1434135264.26
    试验1535241351.77
    试验1641425357.34
    试验1742531463.66
    试验1843142564.48
    试验1944253166.38
    试验2045314359.96
    试验2151543257.76
    试验2252154363.08
    试验2353215474.02
    试验2454321563.73
    试验2555432152.14
    下载: 导出CSV

    表  4  各因素不同水平下降解率的均值及极差

    Table  4.   Mean and extreme difference of degradation efficiency in different levels of factors

    因素不同水平下降解率的均值极差
    水平1水平2水平3水平4水平5
    pH63.14664.31661.63462.36462.1462.682
    温度58.65665.40866.95465.94656.64210.312
    金霉素初始
    浓度
    60.71262.95865.52862.71461.6944.816
    碳源种类64.40659.89263.07663.26062.9724.514
    接种量59.21660.18864.76663.78263.7826.438
    空白对照60.98061.06561.38265.50864.6084.528
    下载: 导出CSV

    表  5  Box-Behnken试验因素与水平

    Table  5.   Box-behnken test factors and levels

    因素因素水平
    −101
    A/℃253035
    B/(mg/L)50100150
    C/%246
    下载: 导出CSV

    表  6  菌株ZL-1响应面分析结果

    Table  6.   Response surface analysis result of strain ZL-1

    标准顺序试验顺序因素A因素B因素C降解率/%
    11122368.307
    2742394.250
    3824370.318
    41744392.644
    51523272.953
    6643293.851
    71023484.010
    8443497.152
    9932289.965
    101634288.469
    111332495.401
    12234490.353
    131433392.039
    14333392.048
    151233391.077
    16533391.628
    17133391.512
    下载: 导出CSV

    表  7  菌株ZL-1降解金霉素的最小拟二乘法分析

    Table  7.   Minimum quasi-multiplied method for degrading chlortetracycline of strain ZL-1

    项目平方和自由度均方FP显著性
    模型1215.2809135.03024.7500.0002
    A846.8601846.860155.220<0.0001***
    B4.71014.7100.8600.3837
    C58.740158.74010.7700.0135**
    AB3.27013.2700.6000.4643
    AC15.040115.0402.7600.1408
    BC3.16013.1600.5800.4718
    A2216.3501216.35039.6500.0004***
    B240.790140.7907.4800.0292**
    C226.300126.3004.8200.0642*
    残差38.19075.460
    失拟相37.530312.51076.1400.0006
    纯误差0.66040.160
    总和1253.48016
      注:***为极显著,**为较显著,*为显著,空白为不显著。
    下载: 导出CSV
  • [1] 高立红, 史亚利, 厉文辉, 等.抗生素环境行为及其环境效应研究进展[J]. 环境化学,2013,32(9):1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004

    GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics[J]. Environmental Chemistry,2013,32(9):1619-1633. doi: 10.7524/j.issn.0254-6108.2013.09.004
    [2] 秦松岩, 李杭, 山丹, 等.四环素类抗生素生产废水处理现状与研究进展[J]. 天津理工大学学报,2016,32(2):50-54. doi: 10.3969/j.issn.1673-095X.2016.002.012

    QIN S Y, LI H, SHAN D, et al. The present situation and research progress in the treatment of tetracycline antibiotic manufacturing wastewater[J]. Journal of Tianjin University of Technology,2016,32(2):50-54. doi: 10.3969/j.issn.1673-095X.2016.002.012
    [3] 吴晓霞, 周晓燕, 李久彤, 等.基于背景荧光猝灭-免疫层析法黄曲霉毒素B1检测卡的研制[J]. 分析试验室,2017,36(2):189-193.

    WU X X, ZHOU X Y, LI J T, et al. Determination card of AFB1 based on background fluorescence quenching immunochromatographic assay[J]. Chinese Journal of Analysis Laboratory,2017,36(2):189-193.
    [4] GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research,2013,47(6):2050-2064. doi: 10.1016/j.watres.2013.01.020
    [5] LIN J S, PAN H Y, LIU S M, et al. Effects of light and microbial activity on the degradation of two fluoroquinolone antibiotics in pond water and sediment[J]. Journal of Environmental Science and Health, Part B,2010,45(5):456-465. doi: 10.1080/03601231003800222
    [6] ZHUANG M, ACHMON Y, CAO Y P, et al. Distribution of antibiotic resistance genes in the environment[J]. Environmental Pollution,2021,285:117402. doi: 10.1016/j.envpol.2021.117402
    [7] 卢运战, 祁克宗, 朱良强.四环素类药物残留检测方法研究进展[J]. 家禽科学,2006(10):36-39. doi: 10.3969/j.issn.1673-1085.2006.10.017
    [8] 代安娜, 陈硕.基于生物传感技术的新型环境污染物多指标分析仪[J]. 科技创新与品牌,2012(5):77.
    [9] CHEE-SANFORD J C, MACKIE R I, KOIKE S, et al. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste[J]. Journal of Environmental Quality,2009,38(3):1086-1108. doi: 10.2134/jeq2008.0128
    [10] 宋冉冉, 国晓春, 卢少勇, 等.东洞庭湖表层水体中抗生素及抗性基因的赋存特征与源分析[J]. 环境科学研究,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27

    SONG R R, GUO X C, LU S Y, et al. Occurrence and source analysis of antibiotics and antibiotic resistance genes in surface water of East Dongting Lake Basin[J]. Research of Environmental Sciences,2021,34(9):2143-2153. doi: 10.13198/j.issn.1001-6929.2021.04.27
    [11] 沈怡雯, 黄智婷, 谢冰.抗生素及其抗性基因在环境中的污染、降解和去除研究进展[J]. 应用与环境生物学报,2015,21(2):181-187.

    SHEN Y W, HUANG Z T, XIE B. Advances in research of pollution, degradation and removal of antibiotics and antibiotic resistance genes in the environment[J]. Chinese Journal of Applied and Environmental Biology,2015,21(2):181-187.
    [12] 张惠东, 刘玉忠.水中四环素类污染物及吸附去除研究进展[J]. 科技创新与应用,2020(28):6-9,13.

    ZHANG H D, LIU Y Z. Research progress of tetracycline pollutants in water and their adsorption and removal[J]. Technology Innovation and Application,2020(28):6-9,13.
    [13] PENG L, REN Y Q, GU J D, et al. Iron improving bio-char derived from microalgae on removal of tetracycline from aqueous system[J]. Environmental Science and Pollution Research,2014,21(12):7631-7640. doi: 10.1007/s11356-014-2677-2
    [14] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology,2017,246:150-159. doi: 10.1016/j.biortech.2017.07.150
    [15] ZHAO C, DENG H P, LI Y, et al. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation[J]. Journal of Hazardous Materials,2010,176(1/2/3):884-892.
    [16] RIMOLDI L, MERONI D, CAPPELLETTI G, et al. Green and low cost tetracycline degradation processes by nanometric and immobilized TiO2 systems[J]. Catalysis Today,2017,281:38-44. doi: 10.1016/j.cattod.2016.08.015
    [17] YUAN C, HUNG C H, LI H W, et al. Photodegradation of ibuprofen by TiO2 co-doping with urea and functionalized CNT irradiated with visible light: effect of doping content and pH[J]. Chemosphere,2016,155:471-478. doi: 10.1016/j.chemosphere.2016.04.055
    [18] DALMÁZIO I, ALMEIDA M O, AUGUSTI R, et al. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2007,18(4):679-687. doi: 10.1016/j.jasms.2006.12.001
    [19] PEI S Z, SHEN C, ZHANG C H, et al. Characterization of the interfacial joule heating effect in the electrochemical advanced oxidation process[J]. Environmental Science & Technology,2019,53(8):4406-4415.
    [20] MARTÍNEZ-HUITLE C A, PANIZZA M. Electrochemical oxidation of organic pollutants for wastewater treatment[J]. Current Opinion in Electrochemistry,2018,11:62-71. doi: 10.1016/j.coelec.2018.07.010
    [21] ZHAO X D, LI X J, ZHANG X L, et al. Bioelectrochemical removal of tetracycline from four typical soils in China: a performance assessment[J]. Bioelectrochemistry,2019,129:26-33. doi: 10.1016/j.bioelechem.2019.04.016
    [22] ZHANG J C, GIORNO L, DRIOLI E. Study of a hybrid process combining PACs and membrane operations for antibiotic wastewater treatment[J]. Desalination,2006,194(1/2/3):101-107.
    [23] 张浩, 罗义, 周启星.四环素类抗生素生态毒性研究进展[J]. 农业环境科学学报,2008,27(2):407-413. doi: 10.3321/j.issn:1672-2043.2008.02.001

    ZHANG H, LUO Y, ZHOU Q X. Research advancement of eco-toxicity of tetracycline antibiotics[J]. Journal of Agro-Environment Science,2008,27(2):407-413. doi: 10.3321/j.issn:1672-2043.2008.02.001
    [24] 敖蒙蒙, 魏健, 陈忠林, 等.四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096

    AO M M, WEI J, CHEN Z L, et al. Research progress on environmental behaviors and ecotoxicity of tetracycline antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096
    [25] 王梓竹, 刘泽, 胡胜杰, 等.四环素降解菌的筛选及其降解特性研究[J]. 饲料研究,2020,43(10):64-68. doi: 10.13557/j.cnki.issn1002-2813.2020.10.017

    WANG Z Z, LIU Z, HU S J, et al. Screening and degradation characteristics of tetracycline-degrading bacteria[J]. Feed Research,2020,43(10):64-68. doi: 10.13557/j.cnki.issn1002-2813.2020.10.017
    [26] 陶美, 贺玉龙, 王林, 等.四环素降解菌的筛选及其降解特性[J]. 应用与环境生物学报,2018,24(2):384-389. doi: 10.19675/j.cnki.1006-687x.2017.06040

    TAO M, HE Y L, WANG L, et al. Screening and degradation characteristics of a tetracycline-degrading bacterial strain[J]. Chinese Journal of Applied and Environmental Biology,2018,24(2):384-389. doi: 10.19675/j.cnki.1006-687x.2017.06040
    [27] 赵永斌. 3种四环素类抗生素降解菌的筛选及降解特性的研究[D]. 太谷: 山西农业大学, 2015.
    [28] 郑茂佳. 四环素降解菌的筛选及其对养殖废水的净化能力[D]. 大连: 辽宁师范大学, 2018.
    [29] LI W, ZHAO L C, SUN Y S, et al. Optimization of pressurized liquid extraction of three major acetophenones from Cynanchum bungei using a Box-Behnken design[J]. International Journal of Molecular Sciences,2012,13(11):14533-14544.
    [30] AGRAWAL M, SARAF S, PRADHAN M, et al. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design[J]. Biomedicine & Pharmacotherapy,2021,141:111919. □
  • 加载中
图(4) / 表(7)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  169
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回