Research on the system dynamics of economic-energy-environment (3E) coupling in industrial parks
-
摘要:
工业园区是企业的集聚地,同时也是污染的高发地,工业园区的生态化发展对区域绿色发展意义重大。鉴于工业园区发展过程中的经济、能源、环境多系统之间的复杂关系,构建了经济–能源–环境(3E)系统动力学模型,在模型有效性的基础上以某国家级生态工业园区为案例进行动态仿真。针对案例园区现状,设定了基准、节能减碳、减污、能源结构调整、经济适度增长、加大节能减碳力度6种情景进行趋势预测,并对照HJ 274—2015《国家生态工业示范园区标准》进行绩效评价。结果表明:工业园区3E系统动力学模型可以用于园区生态化发展的趋势预测,通过经济增速、能耗强度、能源结构、减排因子等关键因子的调控,可对其发展情景进行优化,提出一定条件下的园区发展增速与节能减排力度,为园区规划及发展提供科学指导和决策支持。
-
关键词:
- 工业园区 /
- 经济–能源–环境(3E)系统 /
- 系统动力学 /
- 趋势预测
Abstract:Industrial parks are not only the gathering place of enterprises, but also the high incidence of pollution. So the ecologically oriented development of industrial parks is of great significance to regional green development. In view of the complex relationship among economic, energy and environmental systems in the development of industrial parks, a system dynamics model of the economy, energy, and environment (3E) was developed, based on the effectiveness of the model, a national eco-industrial park was taken as an example for dynamic simulation. According to the current situation of the case park, the development trend of the industrial park was predicted by providing six scenarios, i.e. benchmark, energy conservation and carbon reduction, pollution reduction, energy structure adjustment, moderate economic growth and increasing energy conservation and carbon reduction. Then, the prediction results were evaluated according to the Standard for National Demonstration Eco-industrial Parks (HJ 274-2015). The results showed that the 3E system dynamics model of industrial parks could be used to predict the development trend of the parks. Through the regulation of key factors such as economic growth rate, energy consumption intensity, energy structure and emission reduction factors, the development scenarios could be optimized. The park development growth rate and the energy conservation and emission reduction intensity under certain conditions could be put forward, so as to provide scientific guidance and decision support for park planning and development.
-
表 1 模型主要参数
Table 1. Main parameters of the model
子系统 存量 流量 内生变量 外生变量 经济 工业增加值 工业增加值增长量 工业增加值年均增长率 废水减排因子 固碳技术减排比例 能源 综合能耗 单位工业增加值综合能耗 煤炭(碳)排放 煤炭占比 天然气(碳)排放 天然气占比 石油(碳)排放 石油占比 电力(碳)排放 电力占比 可再生能源(碳)排放 可再生能源占比 环境 水 废水COD最终排放量 工业废水COD排放量 单位工业增加值COD排放量 工业废水COD排放减量 废水氨氮最终排放量 工业废水氨氮排放量 单位工业增加值氨氮排放量 工业废水氨氮排放减量 气 二氧化硫排放量 煤炭二氧化硫排放因子 二氧化碳排放量 表 2 不同情景参数设定
Table 2. Parameter setting of different scenarios
主要参数变量 情景 基准情景 节能减碳情景 减污情景 能源结构调整情景 经济适度增长情景 加大节能减碳力度情景 工业增加值年均增长率/% 10 10 10 10 7 7 单位工业增加值综合能耗
5年累计下降率/%0 14 14 14 14 18 2030年与2019年相比煤炭消费占能源
消费总量比例下降率/%0 0 0 100 100 100 2030年与2019年相比石油消费占能源
消费总量比例下降率/%0 0 0 20 20 20 2030年与2019年相比电力消费占能源
消费总量比例下降率/%0 0 0 0 0 0 2030年与2019年相比天然气消费占能源
消费总量比例提高率/%0 0 0 15 15 15 2030年与2019年相比可再生能源消费占能源
消费总量比例提高率/%0 0 0 18 18 18 废水减排因子 0 0 0.05 0.05 0.05 0.05 自2025年开始固碳技术减碳比例/% 0 2 2 2 2 4 表 3 综合能耗弹性系数
Table 3. Elastic coefficient of comprehensive energy consumption
情景 年份 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 基准情景 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 节能减碳情景 0.67 0.65 0.66 0.65 0.65 0.65 0.65 0.66 0.66 0.66 0.66 减污情景 0.67 0.65 0.66 0.65 0.65 0.65 0.65 0.66 0.66 0.66 0.66 能源结构调整情景 0.67 0.65 0.66 0.65 0.65 0.65 0.65 0.66 0.66 0.66 0.66 经济适度增长情景 0.54 0.50 0.51 0.51 0.50 0.50 0.50 0.51 0.52 0.51 0.52 加大节能减碳力度情景 0.38 0.35 0.35 0.35 0.34 0.34 0.34 0.35 0.36 0.35 0.36 表 4 单位工业增加值二氧化碳年均削减率
Table 4. Average annual reduction rate of carbon dioxide per unit industrial added value
% 情景 年份 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 基准情景 0 0 0 0 0 0 0 0 0 0 0 节能减碳情景 3.00 3.05 3.00 3.00 3.00 3.33 3.28 3.24 3.22 3.20 3.18 减污情景 3.00 3.05 3.00 3.00 3.00 3.33 3.28 3.24 3.22 3.20 3.18 能源结构调整情景 3.31 3.33 3.28 3.28 3.27 3.60 3.59 3.58 3.57 3.54 3.51 经济适度增长情景 3.42 3.43 3.31 3.31 3.30 3.62 3.61 3.60 3.60 3.55 3.53 加大节能减碳力度情景 4.31 4.28 4.28 4.27 4.27 4.92 4.86 4.82 4.78 4.73 4.69 表 5 单位工业增加值二氧化碳5年累计下降率
Table 5. Cumulative decline rate of carbon dioxide per unit industrial added value
% 情景 年份 2024 2025 2026 2027 2028 2029 2030 基准情景 0 0 0 0 0 0 0 节能减碳情景 14.13 15.84 15.76 15.84 15.87 15.85 14.13 减污情景 14.13 15.84 15.76 15.84 15.87 15.85 14.13 能源结构调整情景 15.33 16.99 17.13 17.40 17.65 17.63 15.92 经济适度增长情景 15.42 17.12 17.89 17.56 17.78 17.95 16.01 加大节能减碳力度情景 19.60 22.80 23.01 23.17 23.38 23.38 20.16 表 6 主要污染物弹性系数
Table 6. Elastic coefficient of main pollutants
情景 年份 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 基准情景 0.99 0.95 0.98 0.96 0.97 0.97 0.97 0.98 0.98 0.98 0.97 节能减碳情景 0.99 0.92 0.96 0.94 0.95 0.96 0.95 0.97 0.96 0.96 0.96 减污情景 0.49 0.42 0.49 0.48 0.51 0.54 0.55 0.59 0.61 0.62 0.63 能源结构调整情景 0.49 0.42 0.49 0.48 0.51 0.54 0.55 0.59 0.61 0.62 0.63 经济适度增长情景 0.27 0.18 0.25 0.24 0.26 0.29 0.31 0.36 0.38 0.40 0.42 加大节能减碳力度情景 0.27 0.18 0.25 0.24 0.26 0.29 0.31 0.36 0.38 0.40 0.42 表 7 单位工业增加值二氧化硫年均削减率
Table 7. Average annual reduction rate of sulfur dioxide per unit industrial added value
% 情景 年份 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 基准情景 0 0 0 0 0 0 0 0 0 0 0 节能减碳情景 3.00 3.05 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 减污情景 3.00 3.05 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 能源结构调整情景 9.93 10.24 10.49 10.83 11.21 11.64 14.06 17.06 21.86 25.50 100.00 经济适度增长情景 9.93 10.24 10.49 10.83 11.21 11.64 14.06 17.06 21.86 25.50 100.00 加大节能减碳力度情景 10.86 11.12 11.42 11.75 12.12 12.55 14.95 17.92 22.67 26.27 100.00 -
[1] GUO Y, TIAN J P, CHEN L J. Managing energy infrastructure to decarbonize industrial parks in China[J]. Nature Communications,2020,11:981. doi: 10.1038/s41467-020-14805-z [2] 郭静, 乔琦, 孙启宏, 等.绿色发展、循环发展、低碳发展与工业园区的实践[J]. 环境工程技术学报,2015,5(6):531-538. doi: 10.3969/j.issn.1674-991X.2015.06.083GUO J, QIAO Q, SUN Q H, et al. Analysis of green development, circular development, low-carbon development and practices in industrial parks[J]. Journal of Environmental Engineering Technology,2015,5(6):531-538. doi: 10.3969/j.issn.1674-991X.2015.06.083 [3] 解蕾, 姚扬, 但智钢, 等.基于物质流和能量流分析的典型工业园区循环经济发展评价[J]. 环境工程技术学报,2021,11(3):609-616. doi: 10.12153/j.issn.1674-991X.20200209XIE L, YAO Y, DAN Z G, et al. Evaluation of circular economy development in typical industrial parks based on material flow and energy flow analysis[J]. Journal of Environmental Engineering Technology,2021,11(3):609-616. doi: 10.12153/j.issn.1674-991X.20200209 [4] SONG L, ZHOU X L. Does the green industry policy reduce industrial pollution emissions: evidence from China's National Eco-Industrial Park[J]. Sustainability,2021,13(11):6343. doi: 10.3390/su13116343 [5] 吕一铮, 田金平, 陈吕军.推进中国工业园区绿色发展实现产业生态化的实践与启示[J]. 中国环境管理,2020,12(3):85-89.LÜ Y Z, TIAN J P, CHEN L J. Practice and inspiration of promoting green development of China's industrial parks and realizing industrial ecology[J]. Chinese Journal of Environmental Management,2020,12(3):85-89. [6] FAN Y P, BAI B Y, QIAO Q, et al. Study on eco-efficiency of industrial parks in China based on data envelopment analysis[J]. Journal of Environmental Management,2017,192:107-115. [7] SHAH I H, DONG L, PARK H S. Tracking urban sustainability transition: an eco-efficiency analysis on eco-industrial development in Ulsan, Korea[J]. Journal of Cleaner Production,2020,262:121286. doi: 10.1016/j.jclepro.2020.121286 [8] 刘巍, 田金平, 李星, 等. 基于DEA的中国综合类生态工业园生态效率评价方法研究[J]. 中国人口·资源与环境, 2012, 22(增刊1): 93-97.LIU W, TIAN J P, LI X, et al. Eco-efficiency assessment of eco-industrial parks in China with data envelopment analysis[J]. China Population, Resources and Environment, 2012, 22(Suppl 1): 93-97. [9] 李兆耀, 温正.工业园区资源环境效率评估: 基于DEA模型[J]. 价值工程,2019,38(28):111-113.LI Z Y, WEN Z. Resource and environmental efficiency assessment of industrial parks based on DEA Model[J]. Value Engineering,2019,38(28):111-113. [10] HUI Z. Study on the fuzzy analytic hierarchy integrated evaluation method of eco-industrial parks[J]. Energy Procedia,2011,5:1944-1948. doi: 10.1016/j.egypro.2011.03.335 [11] LI W B. Comprehensive evaluation research on circular economic performance of eco-industrial parks[J]. Energy Procedia,2011,5:1682-1688. doi: 10.1016/j.egypro.2011.03.287 [12] ZHAO H R, ZHAO H R, GUO S. Evaluating the comprehensive benefit of eco-industrial parks by employing multi-criteria decision making approach for circular economy[J]. Journal of Cleaner Production,2017,142:2262-2276. doi: 10.1016/j.jclepro.2016.11.041 [13] 张彩霞, 王艳.区域生态工业园区评价指标体系研究[J]. 统计与管理,2019(6):51-54. [14] 陈延鹏, 蒲灵, 张亚会, 等.四川省工业园区绿色发展水平及对策研究[J]. 四川环境,2021,40(2):193-197.CHEN Y P, PU L, ZHANG Y H, et al. Research on the green development level and countermeasures of Sichuan Industrial Park[J]. Sichuan Environment,2021,40(2):193-197. [15] 范育鹏, 乔琦.基于工业生态化建设的工业园区环境管理研究[J]. 中国环境管理,2016,8(5):80-84.FAN Y P, QIAO Q. Research on environmental management of industrial parks based on industrial ecological construction[J]. Chinese Journal of Environmental Management,2016,8(5):80-84. [16] HU W Q, TIAN J P, CHEN L J. An industrial structure adjustment model to facilitate high-quality development of an eco-industrial park[J]. Science of the Total Environment,2021,766:142502. doi: 10.1016/j.scitotenv.2020.142502 [17] 宋叙言, 沈江.基于多目标优化的生态工业园区产业规划建模与NSGA-Ⅱ-IFD算法求解[J]. 中国人口·资源与环境,2014,24(9):68-74. doi: 10.3969/j.issn.1002-2104.2014.09.010SONG X Y, SHEN J. Modeling and NSGA-Ⅱ-IFD algorithm solution of the industrial planning for eco-industrial parks based on multi-objective optimization[J]. China Population, Resources and Environment,2014,24(9):68-74. doi: 10.3969/j.issn.1002-2104.2014.09.010 [18] 徐峰, 汪雅婷, 李宪赢, 等.中国工业园区生态化发展决策优化方法研究[J]. 中国环境管理,2019,11(4):52-58.XU F, WANG Y T, LI X Y, et al. The method of decision-making optimization for ecological development of Chinese Industrial Park[J]. Chinese Journal of Environmental Management,2019,11(4):52-58. [19] ZHAO Y, SHANG J C, CHEN C, et al. Simulation and evaluation on the eco-industrial system of changchun economic and technological development zone, China[J]. Environmental Monitoring and Assessment,2008,139(1/2/3):339-349. [20] 瞿庆玲, 钱新, 王瑾.综合类工业园环境系统动力学仿真与调控[J]. 环境保护科学,2010,36(2):82-85. doi: 10.3969/j.issn.1004-6216.2010.02.024QU Q L, QIAN X, WANG J. System dynamics simulation and adjustment on environment of comprehensive industrial park[J]. Environmental Protection Science,2010,36(2):82-85. doi: 10.3969/j.issn.1004-6216.2010.02.024 [21] 郑斯瑞, 钱新, 瞿庆玲. 化学工业园的系统动力学仿真与调控[J]. 环境科学研究, 2011, 24(5): 587-592.ZHENG S R, QIAN X, QU Q L. Simulation and adjustment of system dynamics for a chemical industrial park[J]. Research of Environmental Sciences, 2011, 24(5): 587-592. [22] 环境保护部. 国家生态工业示范园区标准: HJ 274—2015[S]. 北京: 环境保护部, 2015. [23] 王其藩. 系统动力学[M]. 上海: 上海财经大学出版社, 2009: 10-17. [24] 佟贺丰, 杨阳, 王静宜, 等.中国绿色经济发展展望: 基于系统动力学模型的情景分析[J]. 中国软科学,2015(6):20-34. doi: 10.3969/j.issn.1002-9753.2015.06.003TONG H F, YANG Y, WANG J Y, et al. Modeling China's Green Economy 2050: scenario analysis based on the system dynamics model[J]. China Soft Science,2015(6):20-34. doi: 10.3969/j.issn.1002-9753.2015.06.003 [25] 顾明瑞, 王帆, 王舒鸿.基于系统动力学的中国绿色发展政策仿真研究[J]. 中国环境管理,2021,13(3):126-135.GU M R, WANG F, WANG S H. Simulation of China's green development policy based on system dynamics[J]. Chinese Journal of Environmental Management,2021,13(3):126-135. [26] 李健, 李宁宁.京津冀绿色发展政策模拟及优化研究[J]. 大连理工大学学报(社会科学版),2021,42(4):14-25.LI J, LI N N. Simulation and optimization of green development policy in Beijing-Tianjin-Hebei[J]. Journal of Dalian University of Technology (Social Sciences),2021,42(4):14-25. [27] LIU H B, LIU Y F, WANG H N, et al. Research on the coordinated development of greenization and urbanization based on system dynamics and data envelopment analysis: a case study of Tianjin[J]. Journal of Cleaner Production,2019,214:195-208. doi: 10.1016/j.jclepro.2018.12.046 [28] ZHAO R T, PENG H, JIAO W T. Dynamics of long-term policy implementation of eco-transformation of industrial parks in China[J]. Journal of Cleaner Production,2021,280:124364. doi: 10.1016/j.jclepro.2020.124364 [29] WU W H, SHENG L Y, TANG F C, et al. A system dynamics model of green innovation and policy simulation with an application in Chinese manufacturing industry[J]. Sustainable Production and Consumption,2021,28:987-1005. (in Chinese) doi: 10.1016/j.spc.2021.07.007 [30] XING L, XUE M G, HU M S. Dynamic simulation and assessment of the coupling coordination degree of the economy-resource-environment system: case of Wuhan City in China[J]. Journal of Environmental Management,2019,230:474-487. [31] 刘承良, 颜琪, 罗静.武汉城市圈经济资源环境耦合的系统动力学模拟[J]. 地理研究,2013,32(5):857-869.LIU C L, YAN Q, LUO J. System dynamics simulation on the coupling of economy resources environment system in Wuhan Metropolitan Region[J]. Geographical Research,2013,32(5):857-869. [32] ZUO Y, SHI Y L, ZHANG Y Z. Research on the sustainable development of an economic-energy-environment (3E) system based on system dynamics (SD): a case study of the Beijing-Tianjin-Hebei Region in China[J]. Sustainability,2017,9(10):1727. doi: 10.3390/su9101727 [33] 杜娟. 基于系统动力学方法的成都市能源-环境-经济3E系统的建模与仿真[D]. 成都: 成都理工大学, 2014. [34] HUI T Y, LIANG J H. A comparative study on the coordination degree about economy-energy-environment of different rigions in China[J]. International Journal of Science and Research,2020,9(2):1256-1261. [35] 李艳红.山东省碳减排系统仿真及政策优化研究[J]. 环境工程技术学报,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063LI Y H. System simulation and policy optimization of carbon emission reduction in Shandong Province[J]. Journal of Environmental Engineering Technology,2020,10(1):150-159. doi: 10.12153/j.issn.1674-991X.20190063 [36] 曾丽君, 隋映辉, 申玉三.科技产业与资源型城市可持续协同发展的系统动力学研究[J]. 中国人口·资源与环境,2014,24(10):85-93. doi: 10.3969/j.issn.1002-2104.2014.10.013ZENG L J, SUI Y H, SHEN Y S. Study on sustainable synergistic development of science & technology industry and resource-based city based on system dynamics[J]. China Population, Resources and Environment,2014,24(10):85-93. doi: 10.3969/j.issn.1002-2104.2014.10.013 [37] 钟永光, 贾晓菁, 钱颖, 等. 系统动力学[M]. 2版. 北京: 科学出版社, 2013: 258-276.