留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr(Ⅵ)污染地下水电动修复过程中的关键指标监测和分析

程政乔 姜杰 杨浈

程政乔,姜杰,杨浈.Cr(Ⅵ)污染地下水电动修复过程中的关键指标监测和分析[J].环境工程技术学报,2022,12(3):816-823 doi: 10.12153/j.issn.1674-991X.20210492
引用本文: 程政乔,姜杰,杨浈.Cr(Ⅵ)污染地下水电动修复过程中的关键指标监测和分析[J].环境工程技术学报,2022,12(3):816-823 doi: 10.12153/j.issn.1674-991X.20210492
CHENG Z Q,JIANG J,YANG Z.Monitoring and analysis of key indicators in the process of electrickinetic remediation of Cr(Ⅵ) contaminated groundwater[J].Journal of Environmental Engineering Technology,2022,12(3):816-823 doi: 10.12153/j.issn.1674-991X.20210492
Citation: CHENG Z Q,JIANG J,YANG Z.Monitoring and analysis of key indicators in the process of electrickinetic remediation of Cr(Ⅵ) contaminated groundwater[J].Journal of Environmental Engineering Technology,2022,12(3):816-823 doi: 10.12153/j.issn.1674-991X.20210492

Cr(Ⅵ)污染地下水电动修复过程中的关键指标监测和分析

doi: 10.12153/j.issn.1674-991X.20210492
基金项目: 北京高校高精尖学科“生态修复工程学”(GJJXK210102);国家自然科学基金项目(21677012)
详细信息
    作者简介:

    程政乔(1997—),男,硕士研究生,主要从事土壤污染修复研究,839610278@qq.com

    通讯作者:

    姜杰(1975—),女,副教授,主要从事腐殖质分子量和结构特征对其氧化还原活性的影响研究,jiangjie@bjfu.edu.cn

    杨浈(1992—),女,博士,主要从事生物化学过程和微生物介导的胞外电子转移等研究,zhen.yang-urban@pku.edu.cn

  • 中图分类号: X53

Monitoring and analysis of key indicators in the process of electrickinetic remediation of Cr(Ⅵ) contaminated groundwater

  • 摘要:

    电动修复是去除地下水中重金属污染物的有效方法。采用电动修复方法对Cr(Ⅵ)初始浓度为1 000 mg/kg的污染浅层地下水进行为期4 d的处理,研究不同电压梯度(1、2、3 V/cm)对饱和带地下水中Cr(Ⅵ)去除率的影响。此外,对修复过程中的相关指标包括电流、阴阳极电解液pH、氧化还原电位(Eh)和不同位置地下水Cr(Ⅵ)浓度进行监测,并且对电动修复前后饱和带介质的pH、Eh和Cr(Ⅵ)去除率进行分析。结果表明:Cr(Ⅵ)的平均去除率随电压梯度升高而升高,当电压梯度为2 V/cm时去除效率和经济性较好,去除率提升与能耗提升比值为0.52,最高去除率91.41%出现在电压梯度为3 V/cm时,但此时相应能耗较高。修复过程中Cr(Ⅵ)会在阳极附近富集,特别是当电压梯度较低(1 V/cm)时,反应结束后近阳极地下水Cr(Ⅵ)富集浓度高达2 170.95 mg/L,介质中Cr(Ⅵ)浓度为1 497.45 mg/kg,此时去除率为负值;阳极电解液Cr(Ⅵ)浓度呈先增长后稳定的趋势,当Cr(Ⅵ)浓度接近4 000 mg/L时,已接近装置的最大迁移值,增加反应时间对Cr(Ⅵ)的回收率提升不大。修复过程中介质Eh降低、pH升高会促进Cr(Ⅵ)的还原和解吸,对Cr(Ⅵ)的去除具有促进作用。

     

  • 图  1  试验装置示意

    Figure  1.  Schematic of electrokinetic equipment

    图  2  取样点示意

    注:a1~a3为阳极室取样点;b1~b3为阴极室取样点;G1~G3为地下水取样点;S1~S5为反应结束后土壤介质取样点。

    Figure  2.  Schematic diagram of sampling points

    图  3  电解液Cr(Ⅵ)浓度变化

    Figure  3.  Variation of Cr(Ⅵ) concentrations in the electrolyte

    图  4  电动处理后含水层中残留的Cr(Ⅵ)

    Figure  4.  Remaining Cr(Ⅵ) in the aquifer after electrokinetic process

    图  5  土壤室地下水中Cr(Ⅵ)浓度变化

    Figure  5.  Variation of Cr(Ⅵ) concentrations in the groundwater in the soil chamber

    图  6  介质中pH分布

    Figure  6.  pH profiles in medium

    图  7  介质中Eh分布

    Figure  7.  Redox potential profiles in medium

    图  8  电流的变化规律

    Figure  8.  Variation law of the electrical current

    图  9  电动修复过程中的累积能耗

    Figure  9.  Accumulated energy consumption during electrokinetic remediation

    表  1  土壤样品的理化性质

    Table  1.   Physical and chemical properties of the soil sample

    土壤粒径占比/%土壤质地pHEh/mV溶解性有机碳浓度/(mg/kg)含水率/%碳酸盐浓度/%
    0.002 mm0.002~0.0 5 mm0.05~2 mm
    13.544.142.4中壤土7.9823210.13226.2
    下载: 导出CSV

    表  2  土壤中Cr(Ⅵ)浓度随机采样结果

    Table  2.   Random sampling results Cr(Ⅵ) concentration in soil mg/kg

    采样点平均值标准差
    12345
    1 005.06938.58936.80989.001 018.00977.4937.76
    下载: 导出CSV

    表  3  电压提高与Cr(Ⅵ)去除率和能耗的关系

    Table  3.   Relationship between voltage increase and Cr(Ⅵ) removal rate and energy consumption

    项目电压梯度/(V/cm)
    1→22→3
    去除率提升/%21.5015.27
    能耗提升/%41.0580.60
    去除率提升/能耗提升0.520.19
    下载: 导出CSV
  • [1] 陈志良, 周建民, 蒋晓璐, 等.典型电镀污染场地重金属污染特征与环境风险评价[J]. 环境工程技术学报,2014,4(1):80-85. doi: 10.3969/j.issn.1674-991X.2014.01.014

    CHEN Z L, ZHOU J M, JIANG X L, et al. Pollution characteristics and environmental risk assessment of heavy metals in typical electroplating contaminated site[J]. Journal of Environmental Engineering Technology,2014,4(1):80-85. doi: 10.3969/j.issn.1674-991X.2014.01.014
    [2] 关峰. 化学淋洗法修复工业场地铬污染土壤的过程控制及效果研究[D]. 青岛: 青岛科技大学, 2018.
    [3] REDDY K R, PARUPUDI U S, DEVULAPALLI S N, et al. Effects of soil composition on the removal of chromium by electrokinetics[J]. Journal of Hazardous Materials,1997,55(1/2/3):135-158.
    [4] 莫慧敏. 改性纳米零价铁对Cr(Ⅵ)的还原固定及机理研究[D]. 南宁: 广西大学, 2020.
    [5] EYVAZI B, JAMSHIDI-ZANJANI A, DARBAN A K. Immobilization of hexavalent chromium in contaminated soil using nano-magnetic MnFe2O4[J]. Journal of Hazardous Materials,2019,365:813-819. doi: 10.1016/j.jhazmat.2018.11.041
    [6] 何俊昱. 土壤六价铬的污染特性、生物可给性及风险评估[D]. 杭州: 浙江大学, 2015.
    [7] 焦芳芳, 马振民, 侯玉松.焦作地区浅层地下水铬(Ⅵ)污染机理及迁移预测[J]. 煤田地质与勘探,2014,42(6):82-86. doi: 10.3969/j.issn.1001-1986.2014.06.017

    JIAO F F, MA Z M, HOU Y S. Pollution mechanism and migration prediction of Cr(Ⅵ) in shallow groundwater in Jiaozuo area[J]. Coal Geology & Exploration,2014,42(6):82-86. doi: 10.3969/j.issn.1001-1986.2014.06.017
    [8] DHERI G S, BRAR M S, MALHI S S. Heavy-metal concentration of sewage-contaminated water and its impact on underground water, soil, and crop plants in alluvial soils of northwestern India[J]. Communications in Soil Science and Plant Analysis,2007,38(9/10):1353-1370.
    [9] 易玲, 高柏, 丁小燕, 等.鄱阳湖流域上游铀尾矿库周边水体中铬形态及健康风险评估[J]. 湖泊科学,2020,32(1):79-88. doi: 10.18307/2020.0108

    YI L, GAO B, DING X Y, et al. Species and health risk assessment of chromium around uranium tailing pond in the upper reaches of Lake Poyang Basin[J]. Journal of Lake Sciences,2020,32(1):79-88. doi: 10.18307/2020.0108
    [10] 崔永高.铬污染土壤和地下水的修复技术研究进展[J]. 工程地质学报,2017,25(4):1001-1009.

    CUI Y G. Research progress on remediation technology of chromium contaminated soils and groundwater in Shanghai[J]. Journal of Engineering Geology,2017,25(4):1001-1009.
    [11] WENG C H, LIN Y T, LIN T Y, et al. Enhancement of electrokinetic remediation of hyper-Cr(Ⅵ) contaminated clay by zero-valent iron[J]. Journal of Hazardous Materials,2007,149(2):292-302. doi: 10.1016/j.jhazmat.2007.03.076
    [12] 叶斌晖, 罗亚婷, 龙碧波, 等.草酸青霉SL2对高浓度铬污染土壤的生物淋洗及胞内铬形态转化研究[J]. 环境科学学报,2018,38(7):2825-2832.

    YE B H, LUO Y T, LONG B B, et al. Research on bioleaching of soils contaminated by high concentration of chromium with Penicillium oxalicum SL2 and the intracellular speciation transformation of chromium[J]. Acta Scientiae Circumstantiae,2018,38(7):2825-2832.
    [13] 闫鹏飞. 电动修复技术处理铬污染粘土试验研究[D]. 青岛: 青岛理工大学, 2010.
    [14] 喻旭. 化学强化剂协同可渗透反应墙强化电动修复铬污染土壤实验研究[D]. 重庆: 重庆大学, 2019.
    [15] 张瑞华, 孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤[J]. 环境科学,2007,28(5):1131-1136. doi: 10.3321/j.issn:0250-3301.2007.05.035

    ZHANG R H, SUN H W. Remediation of chromate contaminated soils by combined technology of electrokinetic and iron PRB[J]. Environmental Science,2007,28(5):1131-1136. doi: 10.3321/j.issn:0250-3301.2007.05.035
    [16] 储陆平, 周书葵, 荣丽杉, 等.电动修复重金属污染土壤的研究进展[J]. 应用化工,2020,49(11):2853-2858. doi: 10.3969/j.issn.1671-3206.2020.11.040

    CHU L P, ZHOU S K, RONG L S, et al. Research progress on electric remediation of heavy metal contaminated soil[J]. Applied Chemical Industry,2020,49(11):2853-2858. doi: 10.3969/j.issn.1671-3206.2020.11.040
    [17] 王业耀, 孟凡生, 陈锋.阴极pH控制对污染土壤电动修复效率的影响[J]. 环境科学研究,2007,20(2):36-40. doi: 10.3321/j.issn:1001-6929.2007.02.008

    WANG Y Y, MENG F S, CHEN F. Effect of pH control at the cathode for the electrokinetic remediation efficiency[J]. Research of Environmental Sciences,2007,20(2):36-40. doi: 10.3321/j.issn:1001-6929.2007.02.008
    [18] 贺亚雪, 代朝猛, 苏益明, 等.地下水重金属污染修复技术研究进展[J]. 水处理技术,2016,42(2):1-5.

    HE Y X, DAI C M, SU Y M, et al. Research progress of remediation technologies on heavy metal pollution in groundwater[J]. Technology of Water Treatment,2016,42(2):1-5.
    [19] CAMESELLE C. Enhancement of electro-osmotic flow during the electrokinetic treatment of a contaminated soil[J]. Electrochimica Acta,2015,181:31-38. doi: 10.1016/j.electacta.2015.02.191
    [20] LU P, FENG Q Y, MENG Q J, et al. Electrokinetic remediation of chromium-and cadmium-contaminated soil from abandoned industrial site[J]. Separation and Purification Technology,2012,98:216-220. doi: 10.1016/j.seppur.2012.07.010
    [21] WU J N, ZHANG J, XIAO C Z. Focus on factors affecting pH, flow of Cr and transformation between Cr(Ⅵ) and Cr(Ⅲ) in the soil with different electrolytes[J]. Electrochimica Acta,2016,211:652-662. doi: 10.1016/j.electacta.2016.06.048
    [22] TANG J, HE J G, LIU T T, et al. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment[J]. Chemosphere,2017,189:599-608. doi: 10.1016/j.chemosphere.2017.09.104
    [23] FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal,2017,316:601-608. doi: 10.1016/j.cej.2017.01.092
    [24] HE J Y, HE C Q, CHEN X P, et al. Comparative study of remediation of Cr(Ⅵ)-contaminated soil using electrokinetics combined with bioremediation[J]. Environmental Science and Pollution Research,2018,25(18):17682-17689. doi: 10.1007/s11356-018-1741-8
    [25] LEI H Y, CHEN K, LI Y J, et al. Electrokinetic recovery of copper, nickel, and zinc from wastewater sludge: effects of electrical potentials[J]. Environmental Engineering Science,2012,29(6):472-478. doi: 10.1089/ees.2010.0467
    [26] LIU J, JIAO B Q, XU Z H. The effect of voltage gradient on removal efficiency and energy consumption during electrokinetic remediation of Zinc[J]. Disaster Advances,2011,4:69-72.
    [27] YUAN C, CHIANG T S. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents[J]. Journal of Hazardous Materials,2008,152(1):309-315. doi: 10.1016/j.jhazmat.2007.06.099
    [28] NASIRI A, JAMSHIDI-ZANJANI A, KHODADADI DARBAN A. Application of enhanced electrokinetic approach to remediate Cr-contaminated soil: effect of chelating agents and permeable reactive barrier[J]. Environmental Pollution,2020,266:115197.
    [29] 李院. 电动-PRB联合修复复合污染土壤箱体实验研究[D]. 北京: 中国地质大学(北京), 2018.
    [30] 徐磊, 刘国, 许文来.低污染浓度重金属Cd污染土壤的电动修复研究[J]. 工业安全与环保,2015,41(3):4-6. doi: 10.3969/j.issn.1001-425X.2015.03.002

    XU L, LIU G, XU W L. Research on low pollution concentrations of Cd soil contamination by electrokinetic remediation[J]. Industrial Safety and Environmental Protection,2015,41(3):4-6. doi: 10.3969/j.issn.1001-425X.2015.03.002
    [31] REDDY K R, CHINTHAMREDDY S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments[J]. Waste Management,1999,19(4):269-282. doi: 10.1016/S0956-053X(99)00085-9
    [32] 江兆霞. 中国东部森林土壤降水脉冲效应的空间格局分布及影响因素[D]. 长春: 东北师范大学, 2021.
    [33] 蔡晔, 林怡雯, 李月娥, 等.土壤和底泥中六价铬提取与检测方法[J]. 实验室研究与探索,2015,34(1):21-25. doi: 10.3969/j.issn.1006-7167.2015.01.006

    CAI Y, LIN Y W, LI Y E, et al. Extraction and detection of chromium(Ⅵ) in soil and sediment[J]. Research and Exploration in Laboratory,2015,34(1):21-25. doi: 10.3969/j.issn.1006-7167.2015.01.006
    [34] 王业耀, 孟凡生.铬(Ⅵ)污染高岭土电动修复实验研究[J]. 生态环境,2005,14(6):855-859.

    WANG Y Y, MENG F S. Experimental study on electrokinetic remediation of chromium-polluted kaolin[J]. Ecology and Environmental Sciences,2005,14(6):855-859.
    [35] 李敏, 孙照明, 马聪, 等.以牺牲阳极强化的电化学联用方法修复铬污染土壤[J]. 环境工程,2020,38(9):224-230.

    LI M, SUN Z M, MA C, et al. Electrochemical combined remediation of chromium contaminated soil based on strengthening by anode consumption[J]. Environmental Engineering,2020,38(9):224-230.
    [36] 万龙. 微电流-Fe0-PRB还原地下水中Cr(Ⅵ)研究[D]. 北京: 中国地质大学(北京), 2018.
    [37] 邵惟俊.汞、镉、钛、铬化合物的Eh-pH图[J]. 长安大学学报(地球科学版),1980(2):27-35.
    [38] DIAS-FERREIRA C, KIRKELUND G M, OTTOSEN L M. Ammonium nitrate as enhancement for electrodialytic soil remediation and investigation of soil solution during the process[J]. Chemosphere,2015,119:889-895. doi: 10.1016/j.chemosphere.2014.08.064
    [39] 张鑫, 孙汝东.准平衡法测量水中溶解氧的研究[J]. 现代化工,2014,34(4):170-173.

    ZHANG X, SUN R D. Determination of dissolved oxygen in water by quasi-equilibrium method[J]. Modern Chemical Industry,2014,34(4):170-173.
    [40] 王成文, 许模, 张俊杰, 等.土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响[J]. 环境工程学报,2016,10(10):6035-6041. doi: 10.12030/j.cjee.201505010

    WANG C W, XU M, ZHANG J J, et al. Influence of soils pH and Eh on vertical migration and transformation of Cr(Ⅵ)[J]. Chinese Journal of Environmental Engineering,2016,10(10):6035-6041. doi: 10.12030/j.cjee.201505010
    [41] 韩娟娟, 孟凡生, 王业耀, 等.电动修复硝酸盐污染高岭土的影响因素[J]. 环境工程技术学报,2014,4(4):269-274. doi: 10.3969/j.issn.1674-991X.2014.04.044

    HAN J J, MENG F S, WANG Y Y, et al. Influence factors of electrokinetic remediation for nitrate-polluted kaolin[J]. Journal of Environmental Engineering Technology,2014,4(4):269-274. doi: 10.3969/j.issn.1674-991X.2014.04.044
    [42] REDDY K R, CHINTHAMREDDY S. Effects of initial form of chromium on electrokinetic remediation in clays[J]. Advances in Environmental Research,2003,7(2):353-365. doi: 10.1016/S1093-0191(02)00005-9
    [43] 尹晋, 马小东, 孙红文.电动修复不同形态铬污染土壤的研究[J]. 环境工程学报,2008,2(5):684-689.

    YIN J, MA X D, SUN H W. Study on electrokinetic remediation of soil contaminated by chromium[J]. Chinese Journal of Environmental Engineering,2008,2(5):684-689.
    [44] ZHANG P, JIN C J, ZHAO Z H, et al. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil[J]. Journal of Hazardous Materials,2010,177(1/2/3):1126-1133. ⊗
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  251
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 网络出版日期:  2022-06-07

目录

    /

    返回文章
    返回