留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富含硅铝的工业灰渣合成沸石的研究进展

马慧 徐德福 李伯启 薛震 王金光 薛飞 张军 刘兆飞

马慧,徐德福,李伯启,等.富含硅铝的工业灰渣合成沸石的研究进展[J].环境工程技术学报,2022,12(5):1660-1667 doi: 10.12153/j.issn.1674-991X.20210493
引用本文: 马慧,徐德福,李伯启,等.富含硅铝的工业灰渣合成沸石的研究进展[J].环境工程技术学报,2022,12(5):1660-1667 doi: 10.12153/j.issn.1674-991X.20210493
MA H,XU D F,LI B Q,et al.Research progress on the synthesis of zeolite from industrial ash rich in silicon and aluminium[J].Journal of Environmental Engineering Technology,2022,12(5):1660-1667 doi: 10.12153/j.issn.1674-991X.20210493
Citation: MA H,XU D F,LI B Q,et al.Research progress on the synthesis of zeolite from industrial ash rich in silicon and aluminium[J].Journal of Environmental Engineering Technology,2022,12(5):1660-1667 doi: 10.12153/j.issn.1674-991X.20210493

富含硅铝的工业灰渣合成沸石的研究进展

doi: 10.12153/j.issn.1674-991X.20210493
基金项目: 江苏省自然科学基金项目(BK20141477);江苏高校“青蓝工程”项目(20161507);江苏省“六大人才高峰”项目(JNHB-057)
详细信息
    作者简介:

    马慧(1995—),女,硕士研究生,主要研究方向为工业灰渣处理与资源化利用,949457600@qq.com

    通讯作者:

    徐德福(1975—),男,教授,博士,主要从事固废处理与资源化利用研究,defuxu1@163.com

  • 中图分类号: X705

Research progress on the synthesis of zeolite from industrial ash rich in silicon and aluminium

  • 摘要:

    沸石是一系列多孔硅铝酸盐材料的统称,因其具有较高的阳离子交换能力,作为吸附材料广泛应用于污水的净化和催化合成化学品等多个领域。燃煤灰渣、煤气化灰渣、铸造灰渣等工业灰渣含有大量的Si、Al元素,可以作为合成沸石的主要原料,达到资源化利用这些固体废物的目的。分析了燃煤灰渣、煤气化灰渣和铸造灰渣的形成和来源,对比三者的化学成分发现,燃煤灰渣的化学成分含量表现为SiO2>Al2O3>Fe2O3>CaO,煤气化灰渣的烧失量比较高,可达36.1%,铸造灰渣的硅铝比显著高于煤气化灰渣和燃煤灰渣。目前,3种灰渣中,燃煤灰渣的研究和利用比较多,而铸造灰渣和煤气化灰渣相对较少;铸造灰渣的Al2O3和SiO2的总含量比较高,烧失量和金属氧化物含量较低,是一种合成沸石的优质原料,可合成高品质沸石;煤气化灰渣的残碳含量比较高,在考虑煤气化灰渣Si、Al回收和利用的同时,还应充分考虑其残碳的资源化利用。

     

  • 图  1  煤气化灰渣合成碳/沸石的X射线衍射

    Figure  1.  XRD patterns of carbon/zeolite synthesized by gasification ash

    图  2  铸造粉尘合成NaA沸石X射线衍射

    Figure  2.  XRD diffraction of NaA synthesized by casting ash

    表  1  中国富含硅铝的工业灰渣化学组成

    Table  1.   Chemical composition of industrial ashes with higher content of silica and aluminium in China % 

    灰渣SiO2Fe2O3Al2O3TiO2CaOMgONa2OK2OSO3烧失量
    燃煤灰渣粉煤灰
    [1,20-21]
    33.9~59.71.5~19.416.5~55.00.2~2.21.1~8.50.6~4.80.2~1.30.7~2.90~2.95.4~10.2
    沸腾炉渣[1,22-23]42.0~69.53.6~14.315.3~32.91.1~1.41.3~5.40.2~1.50.2~0.40.6~1.01.1~2.96.9~16.6
    固硫灰渣 [1,5,17]20.2~40.33.2~7.111.8~32.80.4~1.09.2~43.90.5~2.70.2~1.30.5~1.13.5~12.74.3~19.7
    煤气化灰渣细渣[24-26]28.7~50.12.5~7.78.9~42.70.5~1.72.8~12.70.7~1.40.5~2.40.3~2.00.3~4.68.6~36.1
    粗渣[24-26]33.0~52.14.5~36.812.1~28.40.5~1.32.4~18.61.1~1.90.5~4.30.4~0.70.4~3.31.8~18.9
    铸造灰渣铸造废砂[3,26-28]53.4~98.80.1~2.60.3~36.80.1~1.10~1.80~0.80~0.50~0.40.2~0.80.5~5.6
    铸造粉尘[4,29-30]41.1~93.20.4~4.71.5~22.40~4.90.3~4.60.6~6.21.1~1.40.1~4.60.3~13.3
    下载: 导出CSV

    表  2  合成沸石分子筛的主要工艺及其优缺点

    Table  2.   Main processes of synthesizing zeolite molecular sieves and their advantages and disadvantages

    方法名称主要材料工艺优缺点
    传统水热法[10] 灰渣、碱液(NaOH、KOH、Na2CO3) 用碱液等与灰渣按照一定的固液比进行混合,陈化一定时间后放入反应釜中以适当温度进行晶化,经洗涤、干燥最终获得产品 工艺简单,成本低,但反应时间长,分子筛杂质多,纯度低,产量低
    两步水热法[59] 灰渣、碱液、硅铝酸盐 将原料与碱液混合一段时间后,过滤并检测滤液中的硅铝含量,根据所测含量添加硅铝酸盐,晶化、洗涤、干燥获得最终产品 纯度较高,杂质少,但操作复杂,成本高
    碱熔融法[60] 灰渣、固体碱、硅铝酸盐 采用碱熔焙烧的方法活化原料,将碱熔产物进行研磨,按需要添加硅铝源进行水热反应,随后洗涤、干燥获得分子筛产品 转化率高,分子筛纯度高,节省用水量,但煅烧成本高
    晶种/模板剂合成法[13,61] 灰渣、碱溶液、晶种、模板剂 在晶化过程中,将晶种(天然沸石)/模板剂引入混匀的反应体系中,较低的温度下晶化,洗涤并干燥后得到成品 合成周期缩短,减少杂晶的生成,可合成特定产品,但操作复杂,增加成本,有机模板剂法可能具有毒性
    逐步升温法[62] 灰渣、碱液 在晶化过程中先以较低温度时间下晶化一段时间,再升温晶化一段时间来得到目标产物 晶化时间缩短,粒径分布窄,
    但相关研究较少
    超声波/微波辐射法[63] 灰渣、碱溶液 在晶化过程中使用微波/超声波照射合成沸目标产物 合成速率快,粒度均一,但缺乏大规模
    工业试验
    下载: 导出CSV
  • [1] 宋远明, 钱觉时, 王智.燃煤灰渣活性差异及来源研究[J]. 粉煤灰综合利用,2006,19(6):16-18. doi: 10.3969/j.issn.1005-8249.2006.06.006

    SONG Y M, QIAN J S, WANG Z. Experimental study on pozzolanic activity difference among some of coal ashes[J]. Fly Ash Comprehensive Utilization,2006,19(6):16-18. doi: 10.3969/j.issn.1005-8249.2006.06.006
    [2] 姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 长春: 吉林大学, 2018.
    [3] MYMRIN V, BORGO S C, ALEKSEEV K, et al. Galvanic Cr-Zn and spent foundry sand waste application as valuable components of sustainable ceramics to prevent environment pollution[J]. International Journal of Advanced Manufacturing Technology,2020,107(3/4):1239-1250.
    [4] 刘璇, 李如燕, 孙可伟, 等.铸造旧砂再生粉尘和废旧易拉罐原位反应制取Al2O3颗粒增强Al-Si基复合材料的研究[J]. 铸造,2014,63(1):81-84.

    LIU X, LI R Y, SUN K W, et al. Research on in situ formation of Al2O3 particle reinforced Al-Si matrix composites with foundry used sand reclamation dust and waste cans[J]. Foundry,2014,63(1):81-84.
    [5] WU R D, DAI S B, JIAN S W, et al. Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: effect of superplasticizer[J]. Construction and Building Materials,2020,237:117644. doi: 10.1016/j.conbuildmat.2019.117644
    [6] 赵永彬, 吴辉, 蔡晓亮, 等.煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21(3):110-113.

    ZHAO Y B, WU H, CAI X L, et al. Basic characteristics of coal gasification residual[J]. Clean Coal Technology,2015,21(3):110-113.
    [7] XU Y T, CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology,2018,39(3):382-391. doi: 10.1080/09593330.2017.1301569
    [8] de MATOS P R, MARCON M F, SCHANKOSKI R A, et al. Novel applications of waste foundry sand in conventional and dry-mix concretes[J]. Journal of Environmental Management,2019,244:294-303. doi: 10.1016/j.jenvman.2019.04.048
    [9] HE H F, XU S Y, HAN R Q, et al. Nutrient sequestration from wastewater by using zeolite Na-P1 synthesized from coal fly ash[J]. Environmental Technology,2017,38(8):1022-1029. doi: 10.1080/09593330.2016.1217061
    [10] AMONI B D C, FREITAS A D L D, LOIOLA A R, et al. A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt[J]. Road Materials and Pavement Design, 2019, 20(Suppl 2): S558-S567.
    [11] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials,2021,312:110742. doi: 10.1016/j.micromeso.2020.110742
    [12] CHEN Y G, CONG S L, WANG Q Q, et al. Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source[J]. Journal of Hazardous Materials,2018,349:18-26. doi: 10.1016/j.jhazmat.2018.01.004
    [13] ZHANG Y N, CHEN Y G, KANG W, et al. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. Journal of Cleaner Production,2020,258:120736. doi: 10.1016/j.jclepro.2020.120736
    [14] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018.
    [15] 严博文, 叶长文, 龚锐, 等.响应曲面分析优化改性粉煤灰漂珠对水中氟的吸附性能及机理研究[J]. 环境科学研究,2019,32(4):709-717. doi: 10.13198/j.issn.1001-6929.2018.09.20

    YAN B W, YE C W, GONG R, et al. Optimization study of adsorption parameters for removal of fluoride by fly ash cenospheres modified with calcium using response surface methodology[J]. Research of Environmental Sciences,2019,32(4):709-717. doi: 10.13198/j.issn.1001-6929.2018.09.20
    [16] 宋远明, 钱觉时, 王智.燃煤灰渣活性研究综述[J]. 粉煤灰,2007,19(1):44-46.

    SONG Y M, QIAN J S, WANG Z. Summary of study of coal slag activation[J]. Coal Ash China,2007,19(1):44-46.
    [17] 郑志龙, 向丛阳, 黄凯, 等.固硫灰渣作水泥混合材的应用研究[J]. 水泥工程,2018(5):64-65.

    ZHENG Z L, XIANG C Y, HUANG K, et al. Application study on the sulfurous slag using as cement mixture[J]. Cement Engineering,2018(5):64-65.
    [18] 李国栋.粉煤灰的结构、形态与活性特征[J]. 粉煤灰综合利用,1998(3):37-40.

    LI G D. Characteristics of structure, shape and activity of fly ash[J]. Fly Ash Comprehensive Utilization,1998(3):37-40.
    [19] 钱觉时, 王智, 张玉奇.粉煤灰的矿物组成(下)[J]. 粉煤灰综合利用,2001,14(4):24-28. doi: 10.3969/j.issn.1005-8249.2001.04.009

    QIAN J S, WANG Z, ZHANG Y Q. Mineral composition of fly ash (the third part)[J]. Fly Ash Comprehensive Utilization,2001,14(4):24-28. doi: 10.3969/j.issn.1005-8249.2001.04.009
    [20] 袁春林, 张金明, 段玖祥, 等.我国火电厂粉煤灰的化学成分特征[J]. 电力环境保护,1998,14(1):9-14.
    [21] 郭俊温. 粉煤灰合成沸石及氨氮吸附性能的研究[D]. 包头: 内蒙古科技大学, 2011.
    [22] 王朝强, 李昌文, 谭克锋.沸腾炉渣作为新型建材原材料的研究[J]. 粉煤灰,2015,27(4):16-17.

    WANG C Q, LI C W, TAN K F. Study of boiling slag as new building raw material[J]. Coal Ash,2015,27(4):16-17.
    [23] 李燕. 沸腾炉渣用作混凝土掺和料的试验研究[D]. 杭州: 浙江工业大学, 2009.
    [24] 周宛谕. 灰渣资源化综合利用试验研究[D]. 杭州: 浙江大学, 2010.
    [25] 盛羽静. 气流床气化灰渣的理化特性研究[D]. 上海: 华东理工大学, 2017.
    [26] 王成永. 铸造废砂和炉渣在道路基层中的应用研究[D]. 鞍山: 辽宁科技大学, 2015.
    [27] IQBAL M F, LIU Q F, AZIM I. Experimental study on the utilization of waste foundry sand as embankment and structural fill[J]. IOP Conference Series:Materials Science and Engineering,2019,474:012042. doi: 10.1088/1757-899X/474/1/012042
    [28] 谭俊华, 史熙亮, 朱开金, 等.利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报,2017,36(12):4284-4290.

    TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society,2017,36(12):4284-4290.
    [29] 王敏. 铸造粉尘-粉煤灰基地质聚合物材料的试验研究[D]. 昆明: 昆明理工大学, 2013.
    [30] 王敏, 吴勇生, 李如燕, 等.铸造粉尘-粉煤灰基地质聚合物的力学性能和微观结构分析[J]. 硅酸盐通报,2013,32(7):1346-1351. doi: 10.16552/j.cnki.issn1001-1625.2013.07.023

    WANG M, WU Y S, LI R Y, et al. Mechanical properties and microstructure analysis of casting dust-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society,2013,32(7):1346-1351. doi: 10.16552/j.cnki.issn1001-1625.2013.07.023
    [31] LIU S Q, QI C, JIANG Z, et al. Mineralogy and geochemistry of ash and slag from coal gasification in China: a review[J]. International Geology Review,2018,60(5/6):717-735.
    [32] 卢珊珊. 气流床煤气化灰渣的特性研究[D]. 上海: 华东理工大学, 2011.
    [33] PAN C C, LIANG Q F, GUO X L, et al. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy & Fuels,2016,30(2):1487-1495.
    [34] HUANG S, WU S Y, WU Y Q, et al. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conversion and Management,2017,136:108-118. doi: 10.1016/j.enconman.2016.12.091
    [35] SABOUR M R, AKBARI M, DEZVAREH G. Utilization of color change and image processing to evaluate the waste foundry sand reclamation level[J]. Journal of Materials Research and Technology,2020,9(1):1025-1031. doi: 10.1016/j.jmrt.2019.11.041
    [36] ABICHOU T, BENSON C H, EDIL T B. Foundry green sands as hydraulic barriers: laboratory study[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(12):1174-1183. doi: 10.1061/(ASCE)1090-0241(2000)126:12(1174)
    [37] IZIDORO J D C, FUNGARO D A, dos SANTOS F S, et al. Characteristics of brazilian coal fly ashes and their synthesized zeolites[J]. Fuel Processing Technology,2012,97:38-44. doi: 10.1016/j.fuproc.2012.01.009
    [38] 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019.
    [39] WU S Y, HUANG S, JI L Y, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67-75. doi: 10.1016/j.fuel.2014.01.011
    [40] LIU S, WEI J L, CHEN X T, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering,2020,45(6):4647-4657. doi: 10.1007/s13369-020-04383-z
    [41] 纪昌勇.提高旧砂回用技术 创建高效绿色铸造[J]. 金属加工(热加工),2015(17):5-6.
    [42] APITHANYASAI S, SUPAKATA N, PAPONG S. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production[J]. Heliyon,2020,6(3):e03697. doi: 10.1016/j.heliyon.2020.e03697
    [43] 张萌根. 铸造粉尘/天然橡胶复合材料的制备与性能研究[D]. 南昌: 南昌航空大学, 2019.
    [44] AHMED D N, NAJI L A, FAISAL A A H, et al. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution[J]. Scientific Reports,2020,10:2042. doi: 10.1038/s41598-020-58866-y
    [45] HOLLER H, WIRSCHING U, PERNKLAU E. Experiments on the hydrothermal formation of zeolites from fly-ash[J]. Fortschritte Der Mineralogie,1983,61(1):92-93.
    [46] LIN C F, HSI H C. Resource recovery of waste fly ash: synthesis of zeolite-like materials[J]. Environmental Science & Technology,1995,29(4):1109-1117.
    [47] QUEROL X, MORENO N, UMAÑA J C, et al. Synthesis of zeolites from coal fly ash: an overview[J]. International Journal of Coal Geology,2002,50(1/2/3/4):413-423.
    [48] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004.
    [49] 李鑫媛, 冀晓东, 张晓, 等.氧化铁改性沸石对Se(Ⅳ)的吸附性能及试验废物再利用研究[J]. 环境科学研究,2021,34(4):945-952. doi: 10.13198/j.issn.1001-6929.2020.09.09

    LI X Y, JI X D, ZHANG X A, et al. Adsorption characteristics of Se(Ⅳ) on iron oxid modified zeolite and waste reuse[J]. Research of Environmental Sciences,2021,34(4):945-952. doi: 10.13198/j.issn.1001-6929.2020.09.09
    [50] 奚道国, 张瑞斌, 周乃, 等.铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070

    XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its application in constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070
    [51] RÍOS R C A, WILLIAMS C D, ROBERTS C L. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites[J]. Fuel,2009,88(8):1403-1416. doi: 10.1016/j.fuel.2009.02.012
    [52] 吴连凤. 粉煤灰制备分子筛及性能研究[D]. 沈阳: 东北大学, 2013.
    [53] 刘爽, 杨立荣, 郝瑞瑞, 等.粉煤灰分子筛的制备及其研究[J]. 应用化工,2019,48(12):2978-2982. doi: 10.16581/j.cnki.issn1671-3206.20190919.024

    LIU S, YANG L R, HAO R R, et al. Preparation and study of fly ash molecular sieve[J]. Applied Chemical Industry,2019,48(12):2978-2982. doi: 10.16581/j.cnki.issn1671-3206.20190919.024
    [54] 吴艳, 翟玉春, 尹振, 等.粉煤灰酸法提取氧化铝过程的机械研磨活化研究[J]. 矿冶工程,2009,29(1):71-73. doi: 10.3969/j.issn.0253-6099.2009.01.019

    WU Y, ZHAI Y C, YIN Z, et al. Study on mechanical grinding activation fly ash and acid leaching of aluminium oxide[J]. Mining and Metallurgical Engineering,2009,29(1):71-73. doi: 10.3969/j.issn.0253-6099.2009.01.019
    [55] LIU S, CHEN X, AI W, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production,2019,212:1062-1071.
    [56] RÍOS C A, WILLIAMS C D. Synthesis of zeolitic materials from natural clinker: a new alternative for recycling coal combustion by-products[J]. Fuel,2008,87(12):2482-2492. doi: 10.1016/j.fuel.2008.03.014
    [57] ZHU D D, ZUO J, JIANG Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment,2020,707:136102. doi: 10.1016/j.scitotenv.2019.136102
    [58] 黄佳佳. 粉煤灰合成NaA(X型)分子筛及其对碱性染料废水的吸附研究[D]. 南京: 南京理工大学, 2008.
    [59] CARDOSO A M, HORN M B, FERRET L S, et al. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment[J]. Journal of Hazardous Materials,2015,287:69-77. doi: 10.1016/j.jhazmat.2015.01.042
    [60] BUKHARI S S, BEHIN J, KAZEMIAN H, et al. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review[J]. Fuel,2015,140:250-266. doi: 10.1016/j.fuel.2014.09.077
    [61] LAROSA J L, KWAN S, GRUTZECK M W. Zeolite formation in class F fly ash blended cement pastes[J]. Journal of the American Ceramic Society,1992,75(6):1574-1580. doi: 10.1111/j.1151-2916.1992.tb04228.x
    [62] HUI K S, CHAO C Y H. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents[J]. Journal of Hazardous Materials,2006,137(1):401-409. doi: 10.1016/j.jhazmat.2006.02.014
    [63] SIVALINGAM S, SEN S. An ultra-fast non-conventional waste management protocol to recycle of industrial fly ash into zeolite X[J]. Environmental Science and Pollution Research International,2019,26(34):34693-34701. doi: 10.1007/s11356-018-3664-9
    [64] JIANG Z Q, YANG J, MA H W, et al. Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions[J]. Clean Technologies and Environmental Policy,2016,18(3):629-637. doi: 10.1007/s10098-015-1072-0
    [65] IQBAL A, SATTAR H, HAIDER R, et al. Synthesis and characterization of pure phase zeolite 4A from coal fly ash[J]. Journal of Cleaner Production,2019,219:258-267. doi: 10.1016/j.jclepro.2019.02.066
    [66] WDOWIN M, FRANUS M, PANEK R, et al. The conversion technology of fly ash into zeolites[J]. Clean Technologies and Environmental Policy,2014,16(6):1217-1223. doi: 10.1007/s10098-014-0719-6
    [67] IZQUIERDO M T, JUAN R, RUBIO B, et al. No removal in the selective catalitic reduction process over Cu and Fe exchanged type Y zeolites synthesized from coal fly ash[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2016,38(9):1183-1188. doi: 10.1080/15567036.2014.881932
    [68] 陈彦广, 于丰铭.利用粉煤灰制备X型分子筛的研究进展[J]. 硅酸盐通报,2015,34(3):727-732. doi: 10.16552/j.cnki.issn1001-1625.2015.03.043

    CHEN Y G, YU F M. Progress on preparation of X-zeolite utilization by fly ash[J]. Bulletin of the Chinese Ceramic Society,2015,34(3):727-732. doi: 10.16552/j.cnki.issn1001-1625.2015.03.043
    [69] 赵鹏德, 吉文欣, 张世越, 等.宁东煤气化细渣固相碱熔制备单一相A型沸石[J]. 石油学报(石油加工),2020,36(5):1031-1038.

    ZHAO P D, JI W X, ZHANG S Y, et al. Preparation of single phase zeolite A by solid phase alkali fusion synthesis of fine slag from ningdong coal gasification[J]. Acta Petrolei Sinica (Petroleum Processing Section),2020,36(5):1031-1038.
    [70] de la VILLA MENCÍA R, GOITI E, OCEJO M, et al. Synthesis of zeolite type analcime from industrial wastes[J]. Microporous and Mesoporous Materials,2020,293:109817. doi: 10.1016/j.micromeso.2019.109817
    [71] HE W Y, GONG H, FANG K, et al. Revealing the effect of preparation parameters on zeolite adsorption performance for low and medium concentrations of ammonium[J]. Journal of Environmental Sciences,2019,85:177-188. doi: 10.1016/j.jes.2019.05.021
    [72] 贺框. 粉煤灰制备NaA型沸石分子筛及其对重金属离子吸附的研究[D]. 广州: 华南理工大学, 2016.
    [73] BENARMAS R B, BENGUEDDACH A, di RENZO F. Effectiveness of the tetramethylammonium size-modifier in the synthesis of faujasite nanocrystals[J]. Catalysis Today,2014,227:33-36. doi: 10.1016/j.cattod.2013.11.007
    [74] 杨效益. 连续晶化法合成高性能4A沸石的研究[D]. 太原: 太原理工大学, 2010.
    [75] MAIA A Á B, DIAS R N, ANGÉLICA R S, et al. Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon Kaolin waste[J]. Journal of Materials Research and Technology,2019,8(3):2924-2929. doi: 10.1016/j.jmrt.2019.02.021
    [76] AHMADON A, NAZIR L S M, YEONG Y F, et al. Formation of pure NaX zeolite: effect of ageing and hydrothermal synthesis parameters[J]. IOP Conference Series:Materials Science and Engineering,2018,458:012002. doi: 10.1088/1757-899X/458/1/012002
    [77] ZHANG X, TANG D X, ZHANG M, et al. Synthesis of NaX zeolite: influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals[J]. Powder Technology,2013,235:322-328. doi: 10.1016/j.powtec.2012.10.046
    [78] SUBOTIĆ B, BRONIĆ J, ANTONIĆ T. Combining a structure envelope with chemical information to solve complex zeolite structures from powder data[C]//Proceedings of the 12th International Zeolite Conference. Baltimore, 1998: 2057-2064.
    [79] YANG S Y, VLESSIDIS A G, EVMIRIDIS N P. Influence of gel composition and crystallization conditions on the conventional synthesis of zeolites[J]. Industrial & Engineering Chemistry Research,1997,36(5):1622-1631. ⊕
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  208
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07

目录

    /

    返回文章
    返回