Research progress on the synthesis of zeolite from industrial ash rich in silicon and aluminium
-
摘要:
沸石是一系列多孔硅铝酸盐材料的统称,因其具有较高的阳离子交换能力,作为吸附材料广泛应用于污水的净化和催化合成化学品等多个领域。燃煤灰渣、煤气化灰渣、铸造灰渣等工业灰渣含有大量的Si、Al元素,可以作为合成沸石的主要原料,达到资源化利用这些固体废物的目的。分析了燃煤灰渣、煤气化灰渣和铸造灰渣的形成和来源,对比三者的化学成分发现,燃煤灰渣的化学成分含量表现为SiO2>Al2O3>Fe2O3>CaO,煤气化灰渣的烧失量比较高,可达36.1%,铸造灰渣的硅铝比显著高于煤气化灰渣和燃煤灰渣。目前,3种灰渣中,燃煤灰渣的研究和利用比较多,而铸造灰渣和煤气化灰渣相对较少;铸造灰渣的Al2O3和SiO2的总含量比较高,烧失量和金属氧化物含量较低,是一种合成沸石的优质原料,可合成高品质沸石;煤气化灰渣的残碳含量比较高,在考虑煤气化灰渣Si、Al回收和利用的同时,还应充分考虑其残碳的资源化利用。
Abstract:A series of porous silicon aluminate materials is defined as zeolite, which is widely used in sewage purification, catalytic chemical synthesis and other fields due to its higher cation exchangeability. Coal ash, gasification ash, casting ash, and other industrial ashes may be used as the main raw materials for the synthesis of zeolite because they contained a large number of Si and Al elements, to achieve the purpose of resource utilization of these solid wastes. The formation and sources of coal ash, gasification ash and casting ash were analyzed. By comparing their chemical composition contents, it was found that the chemical composition contents of coal ash followed the order of SiO2>Al2O3>Fe2O3>CaO. The ignition loss of gasification ash was 36.1%, which was relatively higher, and the ratio of Si to Al was significantly higher in casting ash than those in gasification ash and coal ash. At present, among the three kinds of ashes, more research and utilization work had been done for coal ash, while less had been done for casting ash and gasification ash. The total content of Al2O3 and SiO2 in casting ash was relatively high, and its loss on ignition and metal oxide content was low. Casting ash was a high-quality raw material, which could be used to prepare high-quality zeolite. In addition to considering the recovery and utilization of Si and Al of gasification ash, its residual carbon should be fully utilized because the residual carbon content of gasification ash was relatively high.
-
Key words:
- coal ash /
- gasification ash /
- casting ash /
- zeolite /
- resource utilization
-
表 1 中国富含硅铝的工业灰渣化学组成
Table 1. Chemical composition of industrial ashes with higher content of silica and aluminium in China
% 灰渣 SiO2 Fe2O3 Al2O3 TiO2 CaO MgO Na2O K2O SO3 烧失量 燃煤灰渣 粉煤灰
[1,20-21]33.9~59.7 1.5~19.4 16.5~55.0 0.2~2.2 1.1~8.5 0.6~4.8 0.2~1.3 0.7~2.9 0~2.9 5.4~10.2 沸腾炉渣[1,22-23] 42.0~69.5 3.6~14.3 15.3~32.9 1.1~1.4 1.3~5.4 0.2~1.5 0.2~0.4 0.6~1.0 1.1~2.9 6.9~16.6 固硫灰渣 [1,5,17] 20.2~40.3 3.2~7.1 11.8~32.8 0.4~1.0 9.2~43.9 0.5~2.7 0.2~1.3 0.5~1.1 3.5~12.7 4.3~19.7 煤气化灰渣 细渣[24-26] 28.7~50.1 2.5~7.7 8.9~42.7 0.5~1.7 2.8~12.7 0.7~1.4 0.5~2.4 0.3~2.0 0.3~4.6 8.6~36.1 粗渣[24-26] 33.0~52.1 4.5~36.8 12.1~28.4 0.5~1.3 2.4~18.6 1.1~1.9 0.5~4.3 0.4~0.7 0.4~3.3 1.8~18.9 铸造灰渣 铸造废砂[3,26-28] 53.4~98.8 0.1~2.6 0.3~36.8 0.1~1.1 0~1.8 0~0.8 0~0.5 0~0.4 0.2~0.8 0.5~5.6 铸造粉尘[4,29-30] 41.1~93.2 0.4~4.7 1.5~22.4 0~4.9 0.3~4.6 0.6~6.2 1.1~1.4 0.1~4.6 0.3~13.3 表 2 合成沸石分子筛的主要工艺及其优缺点
Table 2. Main processes of synthesizing zeolite molecular sieves and their advantages and disadvantages
方法名称 主要材料 工艺 优缺点 传统水热法[10] 灰渣、碱液(NaOH、KOH、Na2CO3) 用碱液等与灰渣按照一定的固液比进行混合,陈化一定时间后放入反应釜中以适当温度进行晶化,经洗涤、干燥最终获得产品 工艺简单,成本低,但反应时间长,分子筛杂质多,纯度低,产量低 两步水热法[59] 灰渣、碱液、硅铝酸盐 将原料与碱液混合一段时间后,过滤并检测滤液中的硅铝含量,根据所测含量添加硅铝酸盐,晶化、洗涤、干燥获得最终产品 纯度较高,杂质少,但操作复杂,成本高 碱熔融法[60] 灰渣、固体碱、硅铝酸盐 采用碱熔焙烧的方法活化原料,将碱熔产物进行研磨,按需要添加硅铝源进行水热反应,随后洗涤、干燥获得分子筛产品 转化率高,分子筛纯度高,节省用水量,但煅烧成本高 晶种/模板剂合成法[13,61] 灰渣、碱溶液、晶种、模板剂 在晶化过程中,将晶种(天然沸石)/模板剂引入混匀的反应体系中,较低的温度下晶化,洗涤并干燥后得到成品 合成周期缩短,减少杂晶的生成,可合成特定产品,但操作复杂,增加成本,有机模板剂法可能具有毒性 逐步升温法[62] 灰渣、碱液 在晶化过程中先以较低温度时间下晶化一段时间,再升温晶化一段时间来得到目标产物 晶化时间缩短,粒径分布窄,
但相关研究较少超声波/微波辐射法[63] 灰渣、碱溶液 在晶化过程中使用微波/超声波照射合成沸目标产物 合成速率快,粒度均一,但缺乏大规模
工业试验 -
[1] 宋远明, 钱觉时, 王智.燃煤灰渣活性差异及来源研究[J]. 粉煤灰综合利用,2006,19(6):16-18. doi: 10.3969/j.issn.1005-8249.2006.06.006SONG Y M, QIAN J S, WANG Z. Experimental study on pozzolanic activity difference among some of coal ashes[J]. Fly Ash Comprehensive Utilization,2006,19(6):16-18. doi: 10.3969/j.issn.1005-8249.2006.06.006 [2] 姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 长春: 吉林大学, 2018. [3] MYMRIN V, BORGO S C, ALEKSEEV K, et al. Galvanic Cr-Zn and spent foundry sand waste application as valuable components of sustainable ceramics to prevent environment pollution[J]. International Journal of Advanced Manufacturing Technology,2020,107(3/4):1239-1250. [4] 刘璇, 李如燕, 孙可伟, 等.铸造旧砂再生粉尘和废旧易拉罐原位反应制取Al2O3颗粒增强Al-Si基复合材料的研究[J]. 铸造,2014,63(1):81-84.LIU X, LI R Y, SUN K W, et al. Research on in situ formation of Al2O3 particle reinforced Al-Si matrix composites with foundry used sand reclamation dust and waste cans[J]. Foundry,2014,63(1):81-84. [5] WU R D, DAI S B, JIAN S W, et al. Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: effect of superplasticizer[J]. Construction and Building Materials,2020,237:117644. doi: 10.1016/j.conbuildmat.2019.117644 [6] 赵永彬, 吴辉, 蔡晓亮, 等.煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21(3):110-113.ZHAO Y B, WU H, CAI X L, et al. Basic characteristics of coal gasification residual[J]. Clean Coal Technology,2015,21(3):110-113. [7] XU Y T, CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology,2018,39(3):382-391. doi: 10.1080/09593330.2017.1301569 [8] de MATOS P R, MARCON M F, SCHANKOSKI R A, et al. Novel applications of waste foundry sand in conventional and dry-mix concretes[J]. Journal of Environmental Management,2019,244:294-303. doi: 10.1016/j.jenvman.2019.04.048 [9] HE H F, XU S Y, HAN R Q, et al. Nutrient sequestration from wastewater by using zeolite Na-P1 synthesized from coal fly ash[J]. Environmental Technology,2017,38(8):1022-1029. doi: 10.1080/09593330.2016.1217061 [10] AMONI B D C, FREITAS A D L D, LOIOLA A R, et al. A method for NaA zeolite synthesis from coal fly ash and its application in warm mix asphalt[J]. Road Materials and Pavement Design, 2019, 20(Suppl 2): S558-S567. [11] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials,2021,312:110742. doi: 10.1016/j.micromeso.2020.110742 [12] CHEN Y G, CONG S L, WANG Q Q, et al. Optimization of crystal growth of sub-micron ZSM-5 zeolite prepared by using Al(OH)3 extracted from fly ash as an aluminum source[J]. Journal of Hazardous Materials,2018,349:18-26. doi: 10.1016/j.jhazmat.2018.01.004 [13] ZHANG Y N, CHEN Y G, KANG W, et al. Excellent adsorption of Zn(II) using NaP zeolite adsorbent synthesized from coal fly ash via stage treatment[J]. Journal of Cleaner Production,2020,258:120736. doi: 10.1016/j.jclepro.2020.120736 [14] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018. [15] 严博文, 叶长文, 龚锐, 等.响应曲面分析优化改性粉煤灰漂珠对水中氟的吸附性能及机理研究[J]. 环境科学研究,2019,32(4):709-717. doi: 10.13198/j.issn.1001-6929.2018.09.20YAN B W, YE C W, GONG R, et al. Optimization study of adsorption parameters for removal of fluoride by fly ash cenospheres modified with calcium using response surface methodology[J]. Research of Environmental Sciences,2019,32(4):709-717. doi: 10.13198/j.issn.1001-6929.2018.09.20 [16] 宋远明, 钱觉时, 王智.燃煤灰渣活性研究综述[J]. 粉煤灰,2007,19(1):44-46.SONG Y M, QIAN J S, WANG Z. Summary of study of coal slag activation[J]. Coal Ash China,2007,19(1):44-46. [17] 郑志龙, 向丛阳, 黄凯, 等.固硫灰渣作水泥混合材的应用研究[J]. 水泥工程,2018(5):64-65.ZHENG Z L, XIANG C Y, HUANG K, et al. Application study on the sulfurous slag using as cement mixture[J]. Cement Engineering,2018(5):64-65. [18] 李国栋.粉煤灰的结构、形态与活性特征[J]. 粉煤灰综合利用,1998(3):37-40.LI G D. Characteristics of structure, shape and activity of fly ash[J]. Fly Ash Comprehensive Utilization,1998(3):37-40. [19] 钱觉时, 王智, 张玉奇.粉煤灰的矿物组成(下)[J]. 粉煤灰综合利用,2001,14(4):24-28. doi: 10.3969/j.issn.1005-8249.2001.04.009QIAN J S, WANG Z, ZHANG Y Q. Mineral composition of fly ash (the third part)[J]. Fly Ash Comprehensive Utilization,2001,14(4):24-28. doi: 10.3969/j.issn.1005-8249.2001.04.009 [20] 袁春林, 张金明, 段玖祥, 等.我国火电厂粉煤灰的化学成分特征[J]. 电力环境保护,1998,14(1):9-14. [21] 郭俊温. 粉煤灰合成沸石及氨氮吸附性能的研究[D]. 包头: 内蒙古科技大学, 2011. [22] 王朝强, 李昌文, 谭克锋.沸腾炉渣作为新型建材原材料的研究[J]. 粉煤灰,2015,27(4):16-17.WANG C Q, LI C W, TAN K F. Study of boiling slag as new building raw material[J]. Coal Ash,2015,27(4):16-17. [23] 李燕. 沸腾炉渣用作混凝土掺和料的试验研究[D]. 杭州: 浙江工业大学, 2009. [24] 周宛谕. 灰渣资源化综合利用试验研究[D]. 杭州: 浙江大学, 2010. [25] 盛羽静. 气流床气化灰渣的理化特性研究[D]. 上海: 华东理工大学, 2017. [26] 王成永. 铸造废砂和炉渣在道路基层中的应用研究[D]. 鞍山: 辽宁科技大学, 2015. [27] IQBAL M F, LIU Q F, AZIM I. Experimental study on the utilization of waste foundry sand as embankment and structural fill[J]. IOP Conference Series:Materials Science and Engineering,2019,474:012042. doi: 10.1088/1757-899X/474/1/012042 [28] 谭俊华, 史熙亮, 朱开金, 等.利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报,2017,36(12):4284-4290.TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society,2017,36(12):4284-4290. [29] 王敏. 铸造粉尘-粉煤灰基地质聚合物材料的试验研究[D]. 昆明: 昆明理工大学, 2013. [30] 王敏, 吴勇生, 李如燕, 等.铸造粉尘-粉煤灰基地质聚合物的力学性能和微观结构分析[J]. 硅酸盐通报,2013,32(7):1346-1351. doi: 10.16552/j.cnki.issn1001-1625.2013.07.023WANG M, WU Y S, LI R Y, et al. Mechanical properties and microstructure analysis of casting dust-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society,2013,32(7):1346-1351. doi: 10.16552/j.cnki.issn1001-1625.2013.07.023 [31] LIU S Q, QI C, JIANG Z, et al. Mineralogy and geochemistry of ash and slag from coal gasification in China: a review[J]. International Geology Review,2018,60(5/6):717-735. [32] 卢珊珊. 气流床煤气化灰渣的特性研究[D]. 上海: 华东理工大学, 2011. [33] PAN C C, LIANG Q F, GUO X L, et al. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy & Fuels,2016,30(2):1487-1495. [34] HUANG S, WU S Y, WU Y Q, et al. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conversion and Management,2017,136:108-118. doi: 10.1016/j.enconman.2016.12.091 [35] SABOUR M R, AKBARI M, DEZVAREH G. Utilization of color change and image processing to evaluate the waste foundry sand reclamation level[J]. Journal of Materials Research and Technology,2020,9(1):1025-1031. doi: 10.1016/j.jmrt.2019.11.041 [36] ABICHOU T, BENSON C H, EDIL T B. Foundry green sands as hydraulic barriers: laboratory study[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(12):1174-1183. doi: 10.1061/(ASCE)1090-0241(2000)126:12(1174) [37] IZIDORO J D C, FUNGARO D A, dos SANTOS F S, et al. Characteristics of brazilian coal fly ashes and their synthesized zeolites[J]. Fuel Processing Technology,2012,97:38-44. doi: 10.1016/j.fuproc.2012.01.009 [38] 胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019. [39] WU S Y, HUANG S, JI L Y, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67-75. doi: 10.1016/j.fuel.2014.01.011 [40] LIU S, WEI J L, CHEN X T, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering,2020,45(6):4647-4657. doi: 10.1007/s13369-020-04383-z [41] 纪昌勇.提高旧砂回用技术 创建高效绿色铸造[J]. 金属加工(热加工),2015(17):5-6. [42] APITHANYASAI S, SUPAKATA N, PAPONG S. The potential of industrial waste: using foundry sand with fly ash and electric arc furnace slag for geopolymer brick production[J]. Heliyon,2020,6(3):e03697. doi: 10.1016/j.heliyon.2020.e03697 [43] 张萌根. 铸造粉尘/天然橡胶复合材料的制备与性能研究[D]. 南昌: 南昌航空大学, 2019. [44] AHMED D N, NAJI L A, FAISAL A A H, et al. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution[J]. Scientific Reports,2020,10:2042. doi: 10.1038/s41598-020-58866-y [45] HOLLER H, WIRSCHING U, PERNKLAU E. Experiments on the hydrothermal formation of zeolites from fly-ash[J]. Fortschritte Der Mineralogie,1983,61(1):92-93. [46] LIN C F, HSI H C. Resource recovery of waste fly ash: synthesis of zeolite-like materials[J]. Environmental Science & Technology,1995,29(4):1109-1117. [47] QUEROL X, MORENO N, UMAÑA J C, et al. Synthesis of zeolites from coal fly ash: an overview[J]. International Journal of Coal Geology,2002,50(1/2/3/4):413-423. [48] 徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. [49] 李鑫媛, 冀晓东, 张晓, 等.氧化铁改性沸石对Se(Ⅳ)的吸附性能及试验废物再利用研究[J]. 环境科学研究,2021,34(4):945-952. doi: 10.13198/j.issn.1001-6929.2020.09.09LI X Y, JI X D, ZHANG X A, et al. Adsorption characteristics of Se(Ⅳ) on iron oxid modified zeolite and waste reuse[J]. Research of Environmental Sciences,2021,34(4):945-952. doi: 10.13198/j.issn.1001-6929.2020.09.09 [50] 奚道国, 张瑞斌, 周乃, 等.铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its application in constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070 [51] RÍOS R C A, WILLIAMS C D, ROBERTS C L. A comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites[J]. Fuel,2009,88(8):1403-1416. doi: 10.1016/j.fuel.2009.02.012 [52] 吴连凤. 粉煤灰制备分子筛及性能研究[D]. 沈阳: 东北大学, 2013. [53] 刘爽, 杨立荣, 郝瑞瑞, 等.粉煤灰分子筛的制备及其研究[J]. 应用化工,2019,48(12):2978-2982. doi: 10.16581/j.cnki.issn1671-3206.20190919.024LIU S, YANG L R, HAO R R, et al. Preparation and study of fly ash molecular sieve[J]. Applied Chemical Industry,2019,48(12):2978-2982. doi: 10.16581/j.cnki.issn1671-3206.20190919.024 [54] 吴艳, 翟玉春, 尹振, 等.粉煤灰酸法提取氧化铝过程的机械研磨活化研究[J]. 矿冶工程,2009,29(1):71-73. doi: 10.3969/j.issn.0253-6099.2009.01.019WU Y, ZHAI Y C, YIN Z, et al. Study on mechanical grinding activation fly ash and acid leaching of aluminium oxide[J]. Mining and Metallurgical Engineering,2009,29(1):71-73. doi: 10.3969/j.issn.0253-6099.2009.01.019 [55] LIU S, CHEN X, AI W, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production,2019,212:1062-1071. [56] RÍOS C A, WILLIAMS C D. Synthesis of zeolitic materials from natural clinker: a new alternative for recycling coal combustion by-products[J]. Fuel,2008,87(12):2482-2492. doi: 10.1016/j.fuel.2008.03.014 [57] ZHU D D, ZUO J, JIANG Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment,2020,707:136102. doi: 10.1016/j.scitotenv.2019.136102 [58] 黄佳佳. 粉煤灰合成NaA(X型)分子筛及其对碱性染料废水的吸附研究[D]. 南京: 南京理工大学, 2008. [59] CARDOSO A M, HORN M B, FERRET L S, et al. Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment[J]. Journal of Hazardous Materials,2015,287:69-77. doi: 10.1016/j.jhazmat.2015.01.042 [60] BUKHARI S S, BEHIN J, KAZEMIAN H, et al. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review[J]. Fuel,2015,140:250-266. doi: 10.1016/j.fuel.2014.09.077 [61] LAROSA J L, KWAN S, GRUTZECK M W. Zeolite formation in class F fly ash blended cement pastes[J]. Journal of the American Ceramic Society,1992,75(6):1574-1580. doi: 10.1111/j.1151-2916.1992.tb04228.x [62] HUI K S, CHAO C Y H. Pure, single phase, high crystalline, chamfered-edge zeolite 4A synthesized from coal fly ash for use as a builder in detergents[J]. Journal of Hazardous Materials,2006,137(1):401-409. doi: 10.1016/j.jhazmat.2006.02.014 [63] SIVALINGAM S, SEN S. An ultra-fast non-conventional waste management protocol to recycle of industrial fly ash into zeolite X[J]. Environmental Science and Pollution Research International,2019,26(34):34693-34701. doi: 10.1007/s11356-018-3664-9 [64] JIANG Z Q, YANG J, MA H W, et al. Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions[J]. Clean Technologies and Environmental Policy,2016,18(3):629-637. doi: 10.1007/s10098-015-1072-0 [65] IQBAL A, SATTAR H, HAIDER R, et al. Synthesis and characterization of pure phase zeolite 4A from coal fly ash[J]. Journal of Cleaner Production,2019,219:258-267. doi: 10.1016/j.jclepro.2019.02.066 [66] WDOWIN M, FRANUS M, PANEK R, et al. The conversion technology of fly ash into zeolites[J]. Clean Technologies and Environmental Policy,2014,16(6):1217-1223. doi: 10.1007/s10098-014-0719-6 [67] IZQUIERDO M T, JUAN R, RUBIO B, et al. No removal in the selective catalitic reduction process over Cu and Fe exchanged type Y zeolites synthesized from coal fly ash[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2016,38(9):1183-1188. doi: 10.1080/15567036.2014.881932 [68] 陈彦广, 于丰铭.利用粉煤灰制备X型分子筛的研究进展[J]. 硅酸盐通报,2015,34(3):727-732. doi: 10.16552/j.cnki.issn1001-1625.2015.03.043CHEN Y G, YU F M. Progress on preparation of X-zeolite utilization by fly ash[J]. Bulletin of the Chinese Ceramic Society,2015,34(3):727-732. doi: 10.16552/j.cnki.issn1001-1625.2015.03.043 [69] 赵鹏德, 吉文欣, 张世越, 等.宁东煤气化细渣固相碱熔制备单一相A型沸石[J]. 石油学报(石油加工),2020,36(5):1031-1038.ZHAO P D, JI W X, ZHANG S Y, et al. Preparation of single phase zeolite A by solid phase alkali fusion synthesis of fine slag from ningdong coal gasification[J]. Acta Petrolei Sinica (Petroleum Processing Section),2020,36(5):1031-1038. [70] de la VILLA MENCÍA R, GOITI E, OCEJO M, et al. Synthesis of zeolite type analcime from industrial wastes[J]. Microporous and Mesoporous Materials,2020,293:109817. doi: 10.1016/j.micromeso.2019.109817 [71] HE W Y, GONG H, FANG K, et al. Revealing the effect of preparation parameters on zeolite adsorption performance for low and medium concentrations of ammonium[J]. Journal of Environmental Sciences,2019,85:177-188. doi: 10.1016/j.jes.2019.05.021 [72] 贺框. 粉煤灰制备NaA型沸石分子筛及其对重金属离子吸附的研究[D]. 广州: 华南理工大学, 2016. [73] BENARMAS R B, BENGUEDDACH A, di RENZO F. Effectiveness of the tetramethylammonium size-modifier in the synthesis of faujasite nanocrystals[J]. Catalysis Today,2014,227:33-36. doi: 10.1016/j.cattod.2013.11.007 [74] 杨效益. 连续晶化法合成高性能4A沸石的研究[D]. 太原: 太原理工大学, 2010. [75] MAIA A Á B, DIAS R N, ANGÉLICA R S, et al. Influence of an aging step on the synthesis of zeolite NaA from Brazilian Amazon Kaolin waste[J]. Journal of Materials Research and Technology,2019,8(3):2924-2929. doi: 10.1016/j.jmrt.2019.02.021 [76] AHMADON A, NAZIR L S M, YEONG Y F, et al. Formation of pure NaX zeolite: effect of ageing and hydrothermal synthesis parameters[J]. IOP Conference Series:Materials Science and Engineering,2018,458:012002. doi: 10.1088/1757-899X/458/1/012002 [77] ZHANG X, TANG D X, ZHANG M, et al. Synthesis of NaX zeolite: influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals[J]. Powder Technology,2013,235:322-328. doi: 10.1016/j.powtec.2012.10.046 [78] SUBOTIĆ B, BRONIĆ J, ANTONIĆ T. Combining a structure envelope with chemical information to solve complex zeolite structures from powder data[C]//Proceedings of the 12th International Zeolite Conference. Baltimore, 1998: 2057-2064. [79] YANG S Y, VLESSIDIS A G, EVMIRIDIS N P. Influence of gel composition and crystallization conditions on the conventional synthesis of zeolites[J]. Industrial & Engineering Chemistry Research,1997,36(5):1622-1631. ⊕