Characteristics of soil nutrients and groundwater pollution of greenhouse vineyards in Qionghai Lake Basin
-
摘要: 为揭示邛海流域设施葡萄园土壤养分的累积状况与地下水的污染特征,选取邛海北岸典型设施葡萄种植区为研究区域,采集不同种植年限的设施葡萄园和普通农田表层土壤以及相应区域地下水进行分析,并采用相关性分析方法探讨葡萄园表层土壤中氮、磷浓度,土壤理化性质与种植年限之间的关系。结果表明:设施葡萄园表层土壤中速效氮浓度平均为0.702 g/kg,速效磷浓度平均为0.135 g/kg,分别是背景(未耕作)土壤的8.2倍和6.5倍;土壤中总氮和总磷浓度与种植年限呈显著正相关,氮、磷养分会随着种植年限的增加在土壤中累积,且由于种植过程中磷肥的长期大量施用,土壤中磷素累积显著;设施葡萄园土壤pH与其养分浓度呈显著负相关,土壤电导率与其养分浓度呈显著正相关,氮、磷肥料的大量施用会加重土壤的酸化和盐渍化程度;设施葡萄园土壤养分淋失主要以硝态氮为主,地下水中硝酸盐浓度随着种植年限的增加而升高,对邛海水质存在潜在污染风险。Abstract: A typical grape-planting area on the north bank of Qionghai Lake was selected as the research area to reveal the accumulation of nutrients in soil and the pollution characteristics of groundwater in greenhouse vineyards in Qionghai Lake Basin. Surface soil of the greenhouse vineyards and ordinary farmland with different planting years as well as the groundwater in the corresponding area were collected for analysis. The correlation analysis method was applied to explore the relationship between the content of nitrogen and phosphorus in the top soil of vineyards, the physical and chemical properties of soil, and the planting years. The results demonstrated that the average contents of available nitrogen (AN) and available phosphorus (AP) in the surface soil of the study area were 0.702 and 0.135 g/kg, which were 8.2 and 6.5 times of the background (uncultivated) soil, respectively. There was a significant positive correlation between total nitrogen (TN), total phosphorus (TP) concentration and planting years. Both nitrogen and phosphorus accumulated in soil with the increase of planting years, and the accumulation of phosphorus was severe, which was related to the long-term application of phosphorus fertilizer in the process of planting. Meanwhile, there existed a significantly negative correlation between pH and nutrient content in soil of the facility vineyards, and a significantly positive correlation between the soil electrical conductivity (EC) with its nutrient concentration. The large application of nitrogen and phosphorus fertilizer would aggravate the degree of soil acidification and salinization. The nutrient leaching loss in the soil of the facility vineyards was mainly nitrate nitrogen, and the nitrate content in the groundwater increased with the increase of planting years, which posed a potential risk of pollution to the quality of Qionghai Lake.
-
表 1 采样点编号及样品类型
Table 1. Label of sampling points and types of samples
样品类型 采样点编号 种植年限/a 设施葡萄园
土壤(地下水)G1(g1) 1 G2(g2) 2 G5(g5) 5 G6(g6) 6 G7(g7) 7 G12(g12) 12 G16(g16) 16 背景土壤 C0 普通农田(地下水) C1(c1) 井水 #1 #2 注:括号内为地下水样品编号。 表 2 全国第二次土壤普查分级标准
Table 2. Classification standards of soil fertility posed by the 2nd National Soil Survey
分级 OM浓度/
(g/kg)TN浓度/
(g/kg)AN浓度/
(mg/kg)AP浓度/
(mg/kg)一级(极高) >40 >2 >150 >40 二级(高) 30~40 1.5~2 120~150 20~40 三级(中上) 20~30 1~1.5 90~120 10~20 四级(中) 10~20 0.75~1 60~90 5~10 五级(低) 6~10 0.50~0.75 30~60 3~5 六级(极低) <6 <0.5 <30 <3 表 3 研究区土壤pH、EC测定结果
Table 3. Measurement results of soil pH and EC in the study area
土壤类型
采样点pH EC/(mS/cm) 背景土壤 C0 7.51±0.11 a 0.11 普通农田
土壤C1 6.74±0.13 b 0.43 设施葡萄园土壤 G1 6.58±0.12 b 2.99 G2 6.12±0.15 c 2.09 G5 5.74±0.09 d 5.11 G6 5.59±0.08 d 6.80 G7 5.93±0.13 cd 6.98 G12 6.03±0.15 cd 6.52 G16 5.79±0.12 cd 7.29 注:相同小写字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。 表 4 研究区土壤养分浓度测定结果
Table 4. Measurement results of soil nutrient concentration in the study area
土壤类型 采样点 OM浓度/% TN浓度/(g/kg) TP浓度/(g/kg) AN浓度/(mg/kg) AP浓度/(mg/kg) 背景土壤 C0 0.90±0.01 0.51±0.05 0.57±0.03 85.67±6.51 20.72±1.21 普通农田土壤 C1 1.15±0.01 1.17±0.12 0.87±0.08 338.14±22.43 56.11±1.55 设施
葡萄园
土壤G1 3.04±0.03 2.16±0.18 1.94±0.14 713.47±36.44 133.66±6.32 G2 2.88±0.08 1.66±0.11 1.56±0.04 678.44±28.16 151.91±10.04 G5 2.56±0.11 2.10±0.16 1.96±0.02 676.15±19.50 113.62±5.02 G6 2.73±0.13 1.80±0.09 1.68±0.08 672.84±17.83 111.78±6.84 G7 2.23±0.06 1.91±0.07 2.12±0.13 714.61±11.32 141.06±5.26 G12 3.16±0.09 2.53±0.17 2.35±0.12 788.36±23.21 146.33±7.19 G16 2.80±0.15 2.61±0.15 2.29±0.12 668.76±18.67 145.37±4.62 表 5 设施农业不同种植类型区土壤氮、磷浓度对比
Table 5. Comparison of TN and TP concentrations in the soil of different planting types of protected agriculture
设施类型 种植区 TN浓度/(g/kg) TP浓度/(g/kg) AN浓度/(mg/kg) AP浓度/(mg/kg) TN/TP 数据来源 设施蔬菜 陕西省设施蔬菜基地 1.160 1.403 140 0.83 文献[29] 安徽省淮南市谢家集乡 1.465 0.531 146 46 2.76 文献[30] 江苏省南京市 1.680 1.290 180 1.30 文献[31] 云南省昆明市晋宁县 2.091 1.400 236 272 1.49 文献[32] 设施葡萄 湖北省恩施市来凤县 1.370 0.870 120 32 1.57 文献[33] 云南省干热河谷4县 1.700 0.900 230 78 1.89 文献[34] 广西壮族自治区桂林市 2.359 1.036 235 91 2.28 文献[35] 四川省西昌市川兴镇 2.109 1.986 702 135 1.06 本研究 表 6 设施农业不同种植类型区土壤氮、磷施肥量对比
Table 6. Comparison of N and P fertilization quantity in the soil of different planting types of protected agriculture
表 7 设施葡萄园土壤养分浓度与土壤性质、种植年限相关性分析结果
Table 7. Results of correlation analysis between nutrient concentration, soil properties and planting years in the soil of facility vineyards
指标 种植
年限pH EC 粉砂占比 砂粒占比 OM TN TP AN AP 种植年限 1 pH −0.470 1 EC 0.788* −0.853** 1 粉砂占比 −0.035 −0.671* 0.431 1 砂粒占比 0.288 0.778* −0.504 −0.959** 1 OM 0.059 −0.738* −0.724* 0.749* −0.822** 1 TN 0.774* −0.775* 0.667* 0.786* −0.763* 0.879** 1 TP 0.772* −0.792* 0.802** 0.694* −0.707* 0.870** 0.968** 1 AN 0.191 −0.847** 0.869** 0.737* −0.814** 0.936** 0.903** 0.926** 1 AP 0.270 −0.774* 0.761* 0.698* −0.768* 0.921** 0.873** 0.903** 0.955** 1 注:**表示在0.01 水平上(双尾)相关性显著;*表示在0.05 水平上(双尾)相关性显著。 -
[1] 我国设施农业创造近7000万个就业岗位[J]. 吉林农业, 2015(14): 22. [2] 郭金花. 典型设施蔬菜生产系统水肥、农药投入及环境影响的生命周期评价[D]. 北京: 中国农业大学, 2016. [3] 王楠. 设施栽培年限对设施土壤生态环境的影响及次生盐渍化土壤的改良[D]. 重庆: 西南大学, 2012. [4] 赵欣.浅析中国农业面源污染防治研究现状与对策[J]. 中国农学通报,2017,33(33):80-84. doi: 10.11924/j.issn.1000-6850.casb17100001ZHAO X. Brief analysis of present situation and countermeasures of agricultural non-point source pollution control in China[J]. Chinese Agricultural Science Bulletin,2017,33(33):80-84. doi: 10.11924/j.issn.1000-6850.casb17100001 [5] BLOEM E, ALBIHN A, ELVING J, et al. Contamination of organic nutrient sources with potentially toxic elements, antibiotics and pathogen microorganisms in relation to P fertilizer potential and treatment options for the production of sustainable fertilizers: a review[J]. Science of the Total Environment,2017,607/608:225-242. doi: 10.1016/j.scitotenv.2017.06.274 [6] HLAVA J, SZÁKOVÁ J, VADLEJCH J, et al. Long-term application of organic matter based fertilisers: advantages or risks for soil biota: a review[J]. Environmental Reviews,2017,25(4):408-414. doi: 10.1139/er-2017-0011 [7] WANG L Y, ZHENG X L, TIAN F F, et al. Soluble organic nitrogen cycling in soils after application of chemical/organic amendments and groundwater pollution implications[J]. Journal of Contaminant Hydrology,2018,217:43-51. doi: 10.1016/j.jconhyd.2018.08.003 [8] JIA Z M, LIU T, XIA X H, et al. Effect of particle size and composition of suspended sediment on denitrification in river water[J]. Science of the Total Environment,2016,541:934-940. doi: 10.1016/j.scitotenv.2015.10.012 [9] 王朔, 李帅霖, 曾秀丽, 等.西藏设施葡萄土壤酸化、盐渍化和养分特征[J]. 果树学报,2018,35(8):957-966.WANG S, LI S L, ZENG X L, et al. Soil acidification, salinization and nutrient characteristics in greenhouse vineyards in Tibet[J]. Journal of Fruit Science,2018,35(8):957-966. [10] WANG Z F, GONG D Q, ZHANG Y L. Investigating the effects of greenhouse vegetable cultivation on soil fertility in Lhasa, Tibetan Plateau[J]. Chinese Geographical Science,2020,30(3):456-465. doi: 10.1007/s11769-020-1118-z [11] 金晟, 朴成淳, 商照聪, 等.山东省寿光市设施蔬菜大棚土壤质量调查与评价: 亲土在线-农业土壤治理大数据平台(上)[J]. 肥料与健康,2020,47(2):22-26. doi: 10.3969/j.issn.2096-7047.2020.02.005JIN S, PIAO C C, SHANG Z C, et al. Investigation and evaluation of soil quality of vegetable greenhouses in Shouguang City, Shandong Province: pro-soil online-big data platform for agricultural soil remediation (part Ⅰ)[J]. Fertilizer & Health,2020,47(2):22-26. doi: 10.3969/j.issn.2096-7047.2020.02.005 [12] 高伟, 朱静华, 高宝岩, 等.天津市设施蔬菜不同种植年限土壤及地下水养分特征[J]. 华北农学报,2010,25(2):206-211. doi: 10.7668/hbnxb.2010.02.041GAO W, ZHU J H, GAO B Y, et al. Characteristic of soil and groundwater nutrient in different age greenhouse vegetable cultivation in Tianjin[J]. Acta Agriculturae Boreali-Sinica,2010,25(2):206-211. doi: 10.7668/hbnxb.2010.02.041 [13] 辜晓琬, 雷波, 肖杰, 等.邛海水质变化趋势及保护对策研究[J]. 四川环境,2013,32(5):77-82. doi: 10.3969/j.issn.1001-3644.2013.05.015GU X W, LEI B, XIAO J, et al. Study on change trend and protection countermeasures of the water quality in Qionghai Lake Basin[J]. Sichuan Environment,2013,32(5):77-82. doi: 10.3969/j.issn.1001-3644.2013.05.015 [14] 李小艳, 董艳珍, 刘小龙, 等.2018年春季邛海浮游动物群落组成与水质状况研究[J]. 湿地科学,2020,18(5):623-632.LI X Y, DONG Y Z, LIU X L, et al. Zooplankton community composition and water quality status in Qionghai Lake in spring 2018[J]. Wetland Science,2020,18(5):623-632. [15] 罗茜, 张秀蓉.邛海水质现状分析[J]. 西昌学院学报(自然科学版),2010,24(2):69-70.LUO Q, ZHANG X R. Analysis of present water quality in Qionghai Lake[J]. Journal of Xichang College (Natural Science Edition),2010,24(2):69-70. [16] 秦琳, 朱英海, 陈月娇, 等.邛海水体富营养化评价及成因分析[J]. 清洗世界,2019,35(12):50-52. [17] 竺美, 雍毅, 廖瑞雪, 等.邛海生态环境问题及保护对策研究[J]. 四川环境,2014,33(3):89-95.ZHU M, YONG Y, LIAO R X, et al. The eco-environmental issues and protection countermeasures in Qionghai Lake[J]. Sichuan Environment,2014,33(3):89-95. [18] 吉日鲁者. 邛海湖泊水环境质量评价及污染防治研究[D]. 成都: 西南交通大学, 2016. [19] 梁剑, 张绍东, 王洪波, 等.邛海富营养化状态评价初探[J]. 四川环境,2009,28(3):33-36. doi: 10.3969/j.issn.1001-3644.2009.03.009LIANG J, ZHANG S D, WANG H B, et al. Preliminary study of water eutrophication in Qionghai Lake[J]. Sichuan Environment,2009,28(3):33-36. doi: 10.3969/j.issn.1001-3644.2009.03.009 [20] 朱睿. 邛海水污染防治规划研究[D]. 成都: 四川大学, 2004. [21] 李新, 石建屏, 单倩倩, 等.邛海流域水环境承载力分析与调控对策[J]. 供水技术,2020,14(5):46-50. doi: 10.3969/j.issn.1673-9353.2020.05.011LI X, SHI J P, SHAN Q Q, et al. Analysis on water environment carrying capacity of the Qionghai Lake Basin and its regulation countermeasures[J]. Water Technology,2020,14(5):46-50. doi: 10.3969/j.issn.1673-9353.2020.05.011 [22] 朱海峰, 张铁川, 胡海涛, 等.西昌市邛海水污染源调查及防治对策[J]. 现代农业科技,2012(8):275-276. doi: 10.3969/j.issn.1007-5739.2012.08.177ZHU H F, ZHANG T C, HU H T, et al. The survey and control countermeasures of water pollution source in Qionghai Lake of Xichang City[J]. Modern Agricultural Science and Technology,2012(8):275-276. doi: 10.3969/j.issn.1007-5739.2012.08.177 [23] 国家环境保护总局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国环境科学出版社, 2004. [24] 国家环境保护总局. 地下水环境监测技术规范: HJ/T 164—2004[S]. 北京: 中国环境科学出版社, 2004. [25] 全国农业技术推广服务中心. 土壤分析技术规范[M]. 2版. 北京: 中国农业出版社, 2006. [26] 国家质量监督检验检疫总局. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017. [27] 全国土壤普查办公室. 中国土种志(第五卷)[M]. 北京: 中国农业出版社, 1995. [28] 王中波, 何起祥, 杨守业, 等.谢帕德和福克碎屑沉积物分类方法在南黄海表层沉积物编图中的应用与比较[J]. 海洋地质与第四纪地质,2008,28(1):1-8.WANG Z B, HE Q X, YANG S Y, et al. Comparison and application of Shepard's and Folk's classifications to the subsurface mapping in the South Yellow Sea[J]. Marine Geology & Quaternary Geology,2008,28(1):1-8. [29] 张艳霞, 陈智坤, 胡文友, 等.陕西省设施农业土壤退化现状分析[J]. 土壤,2020,52(3):640-644.ZHANG Y X, CHEN Z K, HU W Y, et al. Soil degradation in greenhouse vegetable production systems in Shaanxi[J]. Soils,2020,52(3):640-644. [30] 余雪锋, 郭肖颖, 曹传莉, 等.设施大棚农业对土壤肥力及环境质量的影响研究[J]. 安徽农业科学,2017,45(35):90-93. doi: 10.3969/j.issn.0517-6611.2017.35.028YU X F, GUO X Y, CAO C L, et al. Study on effect of greenhouse agriculture on soil fertility and environmental quality[J]. Journal of Anhui Agricultural Sciences,2017,45(35):90-93. doi: 10.3969/j.issn.0517-6611.2017.35.028 [31] 曾艳, 李征, 张静涵, 等.不同施肥类型下设施农业土壤质量的累积特征[J]. 江苏农业科学,2016,44(6):465-469. [32] 李旭. 滇池流域不同种植条件下化肥与农药使用对土壤氮磷库的影响[D]. 昆明: 云南大学, 2016. [33] 王瑛, 郭奎龙.不同施肥模式对葡萄营养元素累积及土壤肥力的影响[J]. 江苏农业科学,2017,45(19):200-204. [34] 李建查, 何光熊, 张武, 等.云南干热河谷葡萄园土壤肥力特征与初步评价[J]. 热带农业科学,2016,36(11):1-6.LI J C, HE G X, ZHANG W, et al. Soil fertility status and evaluation of vineyard in dry-hot valley, Yunnan[J]. Chinese Journal of Tropical Agriculture,2016,36(11):1-6. [35] 周敏, 杨国顺, 石雪晖, 等.南方地区部分葡萄园营养状况分析[J]. 安徽农业科学,2014,42(16):5077-5079. doi: 10.3969/j.issn.0517-6611.2014.16.049ZHOU M, YANG G S, SHI X H, et al. Analysis on nutritional conditions in parts of southern vineyards[J]. Journal of Anhui Agricultural Sciences,2014,42(16):5077-5079. doi: 10.3969/j.issn.0517-6611.2014.16.049 [36] 杨先芬. 瓜菜施肥技术手册[M]. 北京: 中国农业出版社, 2001. [37] 马振强. 葡萄磷高效基因型砧木筛选及提高磷肥利用率的方法研究[D]. 泰安: 山东农业大学, 2014. [38] 黄绍文, 唐继伟, 李春花, 等.我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报,2017,23(6):1480-1493. doi: 10.11674/zwyf.17366HUANG S W, TANG J W, LI C H, et al. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizer,2017,23(6):1480-1493. doi: 10.11674/zwyf.17366 [39] 刘衎, 郭利娜, 贾羽旋, 等.北京市设施蔬菜施肥状况及减施潜力分析[J]. 中国蔬菜,2020(9):71-81.LIU K, GUO L N, JIA Y X, et al. Analysis on fertilization status and potential of fertilizer reduction in greenhouse vegetable fields in Beijing[J]. China Vegetables,2020(9):71-81. [40] 石生伟, 刘衎, 郭利娜, 等.天津市设施菜地施肥现状及减施潜力和对策[J]. 植物营养与肥料学报,2020,26(6):1091-1105. doi: 10.11674/zwyf.19375SHI S W, LIU K, GUO L N, et al. Fertilization status-quo in greenhouse vegetable production in tianjin and the potential and countermeasures of fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers,2020,26(6):1091-1105. doi: 10.11674/zwyf.19375 [41] 李茹, 胡凡, 李水利, 等.陕西省设施蔬菜施肥现状评价[J]. 现代农业科技,2018(16):53-55. doi: 10.3969/j.issn.1007-5739.2018.16.033LI R, HU F, LI S L, et al. Evaluation on fertilization status of greenhouse vegetable in Shaanxi Province[J]. Modern Agricultural Science and Technology,2018(16):53-55. doi: 10.3969/j.issn.1007-5739.2018.16.033 [42] 孙晓姝, 王立革, 郭珺, 等.山西曲沃设施蔬菜施肥现状及土壤氮磷累积与分配特征[J]. 生态科学,2019,38(6):149-155.SUN X S, WANG L G, GUO J, et al. Nutrient Input of vegetables and potential loss of nitrogen and phosphorus for in solar greenhouse of southern of Quwo, Shanxi[J]. Ecological Science,2019,38(6):149-155. [43] 马振朝, 王嘉莹, 庞新宇, 等.河北省葡萄施肥现状及节能减排潜力分析[J]. 江苏农业科学,2018,46(5):135-139.MA Z C, WANG J Y, PANG X Y, et al. Analysis of fertilization status and energy saving and emission reduction potential of grape in Hebei Province[J]. Jiangsu Agricultural Sciences,2018,46(5):135-139. [44] 马文娟, 同延安, 王真臻.陕西省葡萄施肥现状评估[J]. 安徽农业科学,2014,42(3):716-719. doi: 10.3969/j.issn.0517-6611.2014.03.028MA W J, TONG Y A, WANG Z Z. Evaluation of fertilization situation of grape in Shaanxi Province[J]. Journal of Anhui Agricultural Sciences,2014,42(3):716-719. doi: 10.3969/j.issn.0517-6611.2014.03.028 [45] 王志慧, 马振朝, 张丽娟, 等.河北葡萄园施肥与土壤养分演变及其对产量的影响[J]. 北方园艺,2020(7):106-115.WANG Z H, MA Z C, ZHANG L J, et al. Fertilization and soil nutrient evolution of vineyards in Hebei and its impact on yield[J]. Northern Horticulture,2020(7):106-115. [46] 高德才, 张蕾, 刘强, 等.菜地土壤氮磷污染现状及其防控措施[J]. 湖南农业科学,2013(17):51-55. doi: 10.3969/j.issn.1006-060X.2013.17.016GAO D C, ZHANG L, LIU Q, et al. Present status of nitrogen and phosphorus pollution in vegetable fields and its control measures[J]. Hunan Agricultural Sciences,2013(17):51-55. doi: 10.3969/j.issn.1006-060X.2013.17.016 [47] 石宁, 李彦, 井永苹, 等.长期施肥对设施菜田土壤氮、磷时空变化及流失风险的影响[J]. 农业环境科学学报,2018,37(11):2434-2442. doi: 10.11654/jaes.2018-1065SHI N, LI Y, JING Y P, et al. Effect of long-term fertilization on spatio-temporal changes and risk of nitrogen and phosphorus loss in intensive vegetable production system soil[J]. Journal of Agro-Environment Science,2018,37(11):2434-2442. doi: 10.11654/jaes.2018-1065 [48] 杜雅仙, 樊瑾, 李诗瑶, 等.荒漠草原不同植被微斑块土壤粒径分布分形特征与养分的关系[J]. 应用生态学报,2019,30(11):3716-3724.DU Y X, FAN J, LI S Y, et al. Fractal dimension characteristics of soil particle size distribution under different vegetation patches in desert steppe and its relationship with soil nutrients[J]. Chinese Journal of Applied Ecology,2019,30(11):3716-3724. [49] 郭树江, 杨自辉, 王多泽, 等.民勤绿洲-荒漠过渡带土壤粒径分形特征研究[J]. 中国水土保持,2018(10):53-56. doi: 10.3969/j.issn.1000-0941.2018.10.017GUO S J, YANG Z H, WANG D Z, et al. The fractural characteristics of soil particle size in the oasis-desert transition zone of Minqin[J]. Soil and Water Conservation in China,2018(10):53-56. doi: 10.3969/j.issn.1000-0941.2018.10.017 [50] 李志军, 唐光木, 孙霞, 等.种植年限对新疆南部果园土壤养分变化的影响[J]. 天津农业科学,2016,22(5):15-20.LI Z J, TANG G M, SUN X, et al. Effect of planting years on soil nutrient changes in southern Xinjiang orchard[J]. Tianjin Agricultural Sciences,2016,22(5):15-20. [51] 王静, 呼丽萍, 李昶, 等.种植年限对樱桃园土壤养分和酶活性的影响[J]. 水土保持通报,2013,33(4):155-158.WANG J, HU L P, LI C, et al. Effects of planting period on soil nutrient and soil enzyme activities in cherry orchards[J]. Bulletin of Soil and Water Conservation,2013,33(4):155-158. [52] 刘蕾, 王凌, 徐万强, 等. 设施土壤磷素淋失环境阈值及防控措施[J]. 华北农学报, 2019, 34(增刊1): 197-203.LIU L, WANG L, XU W Q, et al. Environmental threshold and prevention of soil phosphorus leaching in greenhouse soils[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(Suppl 1): 197-203. [53] 汪玉, 袁佳慧, 陈浩, 等. 太湖流域典型农田土壤磷库演变特征及环境风险预测[J/OL]. 土壤学报. [2021-08-10].https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html.WANG Y, YUAN J H, CHEN H, et al. Soil phosphorus pool evolution and environmental risk prediction of paddy soil in the Taihu Lake Region[J/Ol]. Acta Pedologica Sinica.[2021-08-10].https://kns.cnki.net/kcms/detail/32.1119.P.20210809.1259.004.html. [54] 韩张雄, 董亚妮, 王曦婕, 等.设施蔬菜地施用磷肥对土壤及环境中磷素积累的影响研究现状[J]. 中国农业信息,2016(20):70-72. [55] SHI W M, YAO J, YAN F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in south-eastern China[J]. Nutrient Cycling in Agroecosystems,2009,83(1):73-84. doi: 10.1007/s10705-008-9201-3 [56] 李金凤, 姜娟, 赵斌, 等.关于平衡施肥中土壤供肥性能的研究[J]. 土壤通报,2002,33(5):351-355. doi: 10.3321/j.issn:0564-3945.2002.05.009LI J F, JIANG J, ZHAO B, et al. Properties of soil nutrient-supply in the balanced fertilization practices[J]. Chinese Journal of Soil Science,2002,33(5):351-355. doi: 10.3321/j.issn:0564-3945.2002.05.009 [57] 刘宏斌, 李志宏, 张云贵, 等.北京平原农区地下水硝态氮污染状况及其影响因素研究[J]. 土壤学报,2006,43(3):405-413. doi: 10.3321/j.issn:0564-3929.2006.03.008LIU H B, LI Z H, ZHANG Y G, et al. Nitrate contamination of groundwater and its affecting factors in rural areas of Beijing plain[J]. Acta Pedologica Sinica,2006,43(3):405-413. doi: 10.3321/j.issn:0564-3929.2006.03.008 [58] 刘兆辉, 江丽华, 张文君, 等.设施菜地土壤养分演变规律及对地下水威胁的研究[J]. 土壤通报,2008,39(2):293-298. doi: 10.3321/j.issn:0564-3945.2008.02.017LIU Z H, JIANG L H, ZHANG W J, et al. Changes of soil nutrients in vegetable-greenhouse and its pollution to underground water[J]. Chinese Journal of Soil Science,2008,39(2):293-298. doi: 10.3321/j.issn:0564-3945.2008.02.017 [59] 张清, 陈智文, 刘吉平, 等.提高磷肥利用率的研究现状及发展趋势[J]. 世界农业,2007(2):50-52. ◇ doi: 10.3969/j.issn.1002-4433.2007.02.016