Recent advances in pollution source identification technologies in municipal drainage pipe networks
-
摘要:
城市市政排水管网污染源种类繁多且难以辨析,在未明确污染源前提下进行污染控制通常会因缺乏针对性而导致效果不佳,目前尚缺乏对已有管网污染物溯源技术的系统梳理,难以快速准确根据污染场景确定相应的溯源技术。系统综述了现有城市市政排水管网污染物溯源技术,包括物理排查法、特征因子法和水纹识别法等,阐明了各种典型技术方法的原理及在管网污染物溯源研究中的应用现状,比较了各溯源技术的优劣性及其应用场景,最后对管网溯源技术的未来研究方向进行了展望。针对排水管网内污染源错位问题,可在对管网物理排查的基础上,耦合使用数值模拟法、水纹识别法及特征因子法,确定目标溯源管段、可能排放行业以及具体排水户等,再结合稳定同位素法,厘清污染物的产生、输送及排放特性。本研究旨在为高效识别污染源位置、源强及排放过程提供基础支撑。
Abstract:The pollution sources in municipal drainage pipe networks are usually diversified. It is of great difficulty to distinguish the various pollution sources. Generally, if the pollution sources are not well identified, the pertinence of pollution control might be impaired. Therefore, it is likely that the mitigation effects will not be satisfactory. Up to now, there still lacks a systematical overview with a focus on the present pollution source identification technologies in municipal drainage pipe networks, which might make it difficult to determine the corresponding traceability technologies according to the pollution scenes quickly and accurately. The existing pollution source identification technologies in municipal drainage pipe networks were systematically reviewed, including the physical investigation, marker species, and water fingerprinting methods, etc. The principles and application status of each typical pollution traceability technology for pipe networks are well illustrated. In addition, the pros and cons of each technology and its application scenarios were compared. At last, the future research orientation of pollution identification technologies in pipe networks was prospected. Aiming at the dislocation of pollution sources in the drainage pipe networks, it was required to apply physical investigation primarily, and then to couple the numerical simulation, water fingerprinting, and marker species methods. Therefore, the target pipe sections, possible discharge industries, and specific drainage entities could be determined. The production, transportation, and discharge characteristics of pollutants could be further clarified using the stable isotope method. This study could provide fundamental support for the efficient identification of the location, intensity, and discharge process of the pollution sources.
-
表 1 物理排查法技术特点
Table 1. Characteristics of different physical investigation methods
技术 方法 最适条件 限制条件 物理
检查流量监测 相对独立的排水片区;市政排水管网资料缺乏 流量监测空缺期难以避免,逐段流量观测成本高 烟雾测试 雨水管与生活污水排水管混接;识别由雨水管
破损带来的地下水污染易引起公众恐慌,难以检测所有非法连接及违规排放 染料测试 准确识别污水接入雨水管情况;排水面积小
(小于10家排水户为最佳);由个体排水户排放
污水、商业或工业用地需收集详细排水管网资料并获取进入管网节点处
施工权限,部分排水户难以进入光纤分布式温度传感 准确识别生活污水接入雨水管情况;无需进入排水户 无法判断工业废水等其他污水错混接入雨水管情况 视频识别 持续排水;排水仅排入单管管段;社区内已有用于其他调查工作的设备 设备相对昂贵;难以捕捉无流水的排水,难以捕捉
其他汇入雨水管的排水管网
探查潜水检测 管径不小于1 200 mm,流速不大于0.5 m/s 工作人员安全风险较大,准确度难以保证 目视检测 管道结构性或功能性缺陷明显 效率低,准确度难以保证 简易工具检测 根据检查目的和管道运行状况选择合适工具 效率低,准确度难以保证 管道内窥摄像检查技术(CCTV)机器人检测 适用管道管径为100~2 000 mm;
直观获取图像信息无法检测深层缺陷 管道潜望镜(QV)检测 辅助CCTV检测 无法检测水面下结构,单次探测距离较短 管道声呐检测 适用于水面以下管道状况检测 无法检测水面上结构 表 2 城市市政排水管网不同污染源的特征因子参考浓度
Table 2. Reference concentrations for different pollution source marker species of urban municipal drainage pipe networks
特征因子 生活
污水1)黑水 灰水 地下
水工业废水 地表
径流管渠
污泥数据
来源半导体
企业水产品
加工植物油加工 焙烤
食品
制造
(膨化)焙烤
食品
制造
(糕点)豆制品
加工乳制品
制造方便食
品制造总大肠菌群
数/(个/L)2.0×108 5.8×109 8.9×104 184 217 文献
[24,27-29]粪大肠菌群
数/(个/L)>106 1.7×107~
8.5×1094.9×104 55 123 大肠埃希氏菌
数/(个/L)6.4×107 2.1×109 2.0×104 <100 46 钾浓度/(mg/L) 37.7±7.5 23.6±6.6 135±4 397±23 505±17 18±2 525±135 386±22 52±20 文献
[30-31]钠浓度/(mg/L) 43.8±10.7 38.7±11.6 350±70 56±15 476±32 162±29 376±71 46±5 164±84 氯化物浓度/(mg/L) 189.0±21.8 68.2±7.5 1 012±90 140±10 582±107 77±7 573±38 46±4 257±70 心得安
(对映体分数)0.50±0.02 文献[32] LAS与NH3-N浓度比值(LAS/NH3-N)2) 0.06 1.6 0 文献[33] NH3-N与钾浓度比值
(NH3-N/K)1.8 0.18 0.06 镁与钾浓度比值(Mg/K) 0.4 1.1 2.2 TN浓度/(mg/L) 53.4±8.5 5.0±2.3 19.5±2.8 文献[21] 乙磺胺浓度/(μg/L) 15.1±8.8 0.020± 0.002 1.560±0.032 氟化物浓度/(mg/L) 0.36±0.09 0.37±0.16 10.6±1.41 硬度/(mg/L) 162±24 416±50 92.8±10.8 锌与磷浓度比值(Zn/P) 0.08 0.92 0.44 文献[34] NH3-N与锌浓度比值
(NH3-N/Zn)91.51 3.35 12.82 磷与钾浓度比值(P/K) 0.26 0.15 0.34 1)生活污水根据来源分为黑水和灰水2类。黑水指卫生间粪污及冲厕混合废水,灰水指厨房、浴室、洗手池及洗衣房等排放的废水[35]。2)LAS为阴离子表面活性剂。 表 3 城市市政排水管网污染物溯源技术优劣及应用场景
Table 3. Advantages and disadvantages of pollutant traceability technologies in urban municipal drainage network and their application scenarios
方法 优越性 局限性 应用场景 物理
排查法可直接探清市政管网主要结构问题,包括错/混接、漏损等;仅需监测水质、水量常规指标;可精准追溯产生污染的具体排水户 管网水体水质与污染排放源之间为非简单线性关系;管网内窥检测技术成本较高;难以鉴定非直接排放源 污水处理厂进水浓度偏低;合流制排水系统雨季溢流污染严重;初期雨水污染负荷重 特征
因子法准确定性、定量分析雨/污管网错/混接类型;监测工作量较小,可仅监测污染源相关特征因子 难以准确厘清复杂污染源;水化学参数稳定性相对较差,仅可在特定场合使用;仅能判断贡献大的污染源,无法得到污染源对水体的质量贡献 污染源存在特征因子;污染源之间特征因子值差异显著 水纹
识别法可兼容在常规监测系统中;可迅速定位
可能导致管网水质异常的工业企业难以对不具有水纹特性的水样发生响应 工业废水污染物溯源;水污染事件预警 -
[1] 刘翔, 李淼, 周方, 等.城市水环境综合整治工程原理与系统方法[J]. 环境工程,2019,37(10):1-5. doi: 10.13205/j.hjgc.201910001LIU X, LI M, ZHOU F, et al. Principles and systematic methods of urban water environment comprehensive treatment projects[J]. Environmental Engineering,2019,37(10):1-5. doi: 10.13205/j.hjgc.201910001 [2] 胡洪营, 孙迎雪, 陈卓, 等.城市水环境治理面临的课题与长效治理模式[J]. 环境工程,2019,37(10):6-15. doi: 10.13205/j.hjgc.201910002HU H Y, SUN Y X, CHEN Z, et al. Topics and long-term governance model of urban water environment governance[J]. Environmental Engineering,2019,37(10):6-15. doi: 10.13205/j.hjgc.201910002 [3] 高红杰, 袁鹏, 刘瑞霞.我国城市黑臭水体综合整治: 问题分析、治理思路与措施[J]. 环境工程技术学报,2020,10(5):691-695. doi: 10.12153/j.issn.1674-991X.20200105GAO H J, YUAN P, LIU R X. Comprehensive governance of urban black and odorous water bodies in China: problem analysis,treatment ideas and measures[J]. Journal of Environmental Engineering Technology,2020,10(5):691-695. doi: 10.12153/j.issn.1674-991X.20200105 [4] 住房和城乡建设部, 生态环境部. 全国城市黑臭水体整治信息发布[EB/OL]. [2021-09-10]. http://www.hcstzz.com/. [5] 唐建国, 张悦, 梅晓洁.城镇排水系统提质增效的方法与措施[J]. 给水排水,2019,55(4):30-38.TANG J G, ZHANG Y, MEI X J. Strategies and methods for improving the quality and efficiency of the urban drainage system[J]. Water & Wastewater Engineering,2019,55(4):30-38. [6] 黄乃先, 齐一凡, 金伟.排水管道沉积物控制的研究进展[J]. 环境工程技术学报,2021,11(3):507-513. doi: 10.12153/j.issn.1674-991X.20210017HUANG N X, QI Y F, JIN W. Research progress on the control of sediments in the drainage pipe[J]. Journal of Environmental Engineering Technology,2021,11(3):507-513. doi: 10.12153/j.issn.1674-991X.20210017 [7] 第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8-10.The second national pollution source census bulletin[J]. Environmental Protection, 2020, 48(18): 8-10. [8] 李春萍, 蒋建国, 陈爱梅, 等.常州市老城区重点生活污染源对北市河的污染负荷研究[J]. 环境科学,2010,31(11):2594-2598. doi: 10.13227/j.hjkx.2010.11.008LI C P, JIANG J G, CHEN A M, et al. Characteristics and loads of key sources of pollutions discharged into Beishi River, Changzhou City[J]. Environmental Science,2010,31(11):2594-2598. doi: 10.13227/j.hjkx.2010.11.008 [9] 乔琦, 白璐, 刘丹丹, 等.我国工业污染源产排污核算系数法发展历程及研究进展[J]. 环境科学研究,2020,33(8):1783-1794. doi: 10.13198/j.issn.1001-6929.2020.05.09QIAO Q, BAI L, LIU D D, et al. Development and research progress of pollutant generation and discharge coefficients for industrial pollution sources in China[J]. Research of Environmental Sciences,2020,33(8):1783-1794. doi: 10.13198/j.issn.1001-6929.2020.05.09 [10] 时迪迪, 张守红, 王红.北沙河上游流域潜在非点源污染风险时空变化分析[J]. 环境科学研究,2020,33(4):921-931. doi: 10.13198/j.issn.1001-6929.2020.01.01SHI D D, ZHANG S H, WANG H. Risk analysis of spatio-temporal variation of potential non-point source pollution in the upper reaches of the Beisha River[J]. Research of Environmental Sciences,2020,33(4):921-931. doi: 10.13198/j.issn.1001-6929.2020.01.01 [11] 张怡蕾, 操家顺, 薛朝霞, 等.城市排水管道内污染物迁移转化规律研究进展[J]. 环境科学研究,2020,33(1):111-121. doi: 10.13198/j.issn.1001-6929.2019.06.15ZHANG Y L, CAO J S, XUE Z X, et al. Research progress on the pollutants migration and transformation in municipal sewer[J]. Research of Environmental Sciences,2020,33(1):111-121. doi: 10.13198/j.issn.1001-6929.2019.06.15 [12] 高小平.城市污水截污纳管及建设管理适宜性技术措施探讨[J]. 中国市政工程,2018(2):71-74. doi: 10.3969/j.issn.1004-4655.2018.02.021GAO X P. Study on sewage interception pipelines of urban wastewater & appropriate technical measures for construction management[J]. China Municipal Engineering,2018(2):71-74. doi: 10.3969/j.issn.1004-4655.2018.02.021 [13] 李正雄, 齐鹏明, 杨明.盘溪河流域市政排水管网溯源排查及内窥检测[J]. 广东水利水电,2020(10):100-104. doi: 10.11905/j.issn.1008-0112.2020.10.023LI Z X, QI P M, YANG M. Analysis and research of municipal drainage pipe network traceability and peep detection technology[J]. Guangdong Water Resources and Hydropower,2020(10):100-104. doi: 10.11905/j.issn.1008-0112.2020.10.023 [14] 刘晓东, 王珏.地表水污染源识别方法研究进展[J]. 水科学进展,2020,31(2):302-311. doi: 10.14042/j.cnki.32.1309.2020.02.016LIU X D, WANG J. Advances in methods for identifying surface water pollution sources[J]. Advances in Water Science,2020,31(2):302-311. doi: 10.14042/j.cnki.32.1309.2020.02.016 [15] 邸俊强.入河排污口调查与监测过程中有关问题分析[J]. 水资源开发与管理,2019,17(4):37-40. doi: 10.16616/j.cnki.10-1326/TV.2019.04.10DI J Q. Analysis of relevant problems in investigation and monitoring of sewage draining exit into rivers[J]. Water Resources Development and Management,2019,17(4):37-40. doi: 10.16616/j.cnki.10-1326/TV.2019.04.10 [16] ALMEIDA M C, BRITO R S. System diagnostics using flow data: quantifying sources and opportunities for performance improvement[C]//Global solutions for urban drainage. Portland, Oregon, USA. Reston, VA: American Society of Civil Engineers, 2002: 1-13. [17] Environmental Protection Agency. Illicit discharge detection and elimination guidance manual[R].Washington DC:US EPA, 2004. [18] JEWELL C. A systematic methodology for the identification and remediation of illegal connections[J]. Proceedings of the Water Environment Federation,2001,2001(2):669-683. doi: 10.2175/193864701784835899 [19] HOES O A C, SCHILPEROORT R P S, LUXEMBURG W M J, et al. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing[J]. Water Research,2009,43(20):5187-5197. doi: 10.1016/j.watres.2009.08.020 [20] 王新妍.城市排水管道缺陷检测方法及发展现状探析[J]. 铁道建筑技术,2020(2):50-53. doi: 10.3969/j.issn.1009-4539.2020.02.013WANG X Y. Review on defect detection methods and development status of urban drainage pipeline[J]. Railway Construction Technology,2020(2):50-53. doi: 10.3969/j.issn.1009-4539.2020.02.013 [21] 徐祖信, 汪玲玲, 尹海龙.基于水质特征因子和Monte Carlo理论的雨水管网混接诊断方法[J]. 同济大学学报(自然科学版),2015,43(11):1715-1721. doi: 10.11908/j.issn.0253-374x.2015.11.016XU Z X, WANG L L, YIN H L. Quantification of non-storm water flow entries into storm drains using Monte Carlo based marker species approach[J]. Journal of Tongji University (Natural Science),2015,43(11):1715-1721. doi: 10.11908/j.issn.0253-374x.2015.11.016 [22] FIELD R, PITT R, LALOR M, et al. Investigation of dry-weather pollutant entries into storm-drainage systems[J]. Journal of Environmental Engineering,1994,120(5):1044-1066. doi: 10.1061/(ASCE)0733-9372(1994)120:5(1044) [23] BOEHM A B, FUHRMAN J A, MRSE R D, et al. Tiered approach for identification of a human fecal pollution source at a recreational beach: case study at Avalon Bay, Catalina Island, California[J]. Environmental Science & Technology,2003,37(4):673-680. [24] 尹海龙, 邱敏燕, 徐祖信.一种基于微生物指示菌的雨水管网混接污染识别新方法[J]. 中国给水排水,2014,30(16):39-42. doi: 10.19853/j.zgjsps.1000-4602.2014.16.009YIN H L, QIU M Y, XU Z X. Investigation of inappropriate non-stormwater entries into storm drainage system based on microbial indicator[J]. China Water & Wastewater,2014,30(16):39-42. doi: 10.19853/j.zgjsps.1000-4602.2014.16.009 [25] CARRILLO M, ESTRADA E, HAZEN T C. Survival and enumeration of the fecal indicators Bifidobacterium adolescentis and Escherichia coli in a tropical rain forest watershed[J]. Applied and Environmental Microbiology,1985,50(2):468-476. doi: 10.1128/aem.50.2.468-476.1985 [26] SCOTT T M, JENKINS T M, LUKASIK J, et al. Potential use of a host associated molecular marker in Enterococcus faecium as an index of human fecal pollution[J]. Environmental Science & Technology,2005,39(1):283-287. [27] LITTON R M, AHN J H, SERCU B, et al. Evaluation of chemical,molecular,and traditional markers of fecal contamination in an effluent dominated urban stream[J]. Environmental Science & Technology,2010,44(19):7369-7375. [28] 黄飞, 唐江, 陈燕, 等.湛江市区生活污水有机物和微生物污染调查[J]. 实用预防医学,2006,13(4):944-946. doi: 10.3969/j.issn.1006-3110.2006.04.063HUANG F, TANG J, CHEN Y, et al. Survey on organic and microbial pollution of domestic sewage in urban district of Zhanjiang City[J]. Practical Preventive Medicine,2006,13(4):944-946. doi: 10.3969/j.issn.1006-3110.2006.04.063 [29] 阮久丽, 于凤, 陈洪斌, 等.生活污水分类收集处理的探讨[J]. 中国给水排水,2010,26(8):25-29.RUAN J L, YU F, CHEN H B, et al. Discussion on categorized collection and quality-based treatment of domestic sewage[J]. China Water & Wastewater,2010,26(8):25-29. [30] 尹海龙, 郭龙天, 解铭, 等.基于特征因子的食品工业废水排放追踪方法[J]. 同济大学学报(自然科学版),2019,47(8):1168-1174. doi: 10.11908/j.issn.0253-374x.2019.08.013YIN H L, GUO L T, XIE M, et al. Source tracking of food industry wastewater discharge into sewers using marker species[J]. Journal of Tongji University (Natural Science),2019,47(8):1168-1174. doi: 10.11908/j.issn.0253-374x.2019.08.013 [31] YIN H L, XIE M, ZHANG L Y, et al. Identification of sewage markers to indicate sources of contamination: low cost options for misconnected non-stormwater source tracking in stormwater systems[J]. Science of the Total Environment,2019,648:125-134. doi: 10.1016/j.scitotenv.2018.07.448 [32] FONO L J, SEDLAK D L. Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters[J]. Environmental Science & Technology,2005,39(23):9244-9252. [33] 孟莹莹, 冯沧, 李田, 等.不同混接程度分流制雨水系统旱流水量及污染负荷来源研究[J]. 环境科学,2009,30(12):3527-3533. doi: 10.3321/j.issn:0250-3301.2009.12.014MENG Y Y, FENG C, LI T, et al. Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge[J]. Environmental Science,2009,30(12):3527-3533. doi: 10.3321/j.issn:0250-3301.2009.12.014 [34] 戴梅红, 李田, 张伟.合流制排水系统雨天溢流污染CMB法源解析[J]. 环境科学,2013,34(11):4226-4230. doi: 10.13227/j.hjkx.2013.11.007DAI M H, LI T, ZHANG W. Pollutant source apportionment of combined sewer overflows using chemical mass balance method[J]. Environmental Science,2013,34(11):4226-4230. doi: 10.13227/j.hjkx.2013.11.007 [35] 李云, 何志琴, 夏训峰, 等.国内外灰水处理技术研究进展[J]. 环境工程技术学报,2021,11(5):935-941. doi: 10.12153/j.issn.1674-991X.20200301LI Y, HE Z Q, XIA X F, et al. Research progress of greywater treatment technology at home and abroad[J]. Journal of Environmental Engineering Technology,2021,11(5):935-941. doi: 10.12153/j.issn.1674-991X.20200301 [36] PITT R, LALOR M, ADRIAN D, et al. Investigation of inappropriate pollutant entries into storm drainage systems: a user's guide[R]. Ohio: Risk Reduction Engineering Laboratory, 1993. [37] SHELTON J M, KIM L, FANG J S, et al. Assessing the severity of rainfall-derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers[J]. Environmental Science & Technology,2011,45(20):8683-8690. [38] 李源, 祁欣.高精度电导率远程在线监测系统的研究[J]. 电子测量技术,2014,37(10):139-143. doi: 10.3969/j.issn.1002-7300.2014.10.031LI Y, QI X. Research of high-precision remote online monitoring system for water conductivity[J]. Electronic Measurement Technology,2014,37(10):139-143. doi: 10.3969/j.issn.1002-7300.2014.10.031 [39] BUERGE I J, BUSER H R, KAHLE M, et al. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater[J]. Environmental Science & Technology,2009,43(12):4381-4385. [40] van STEMPVOORT D R, ROY J W, GRABUSKI J, et al. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater[J]. Science of the Total Environment,2013,461/462:348-359. doi: 10.1016/j.scitotenv.2013.05.001 [41] SCHEURER M, BRAUCH H J, LANGE F T. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT)[J]. Analytical and Bioanalytical Chemistry,2009,394(6):1585-1594. doi: 10.1007/s00216-009-2881-y [42] OPPENHEIMER J, EATON A, BADRUZZAMAN M, et al. Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions[J]. Water Research,2011,45(13):4019-4027. doi: 10.1016/j.watres.2011.05.014 [43] XU Z X, WANG L L, YIN H L, et al. Source apportionment of non-storm water entries into storm drains using marker species: Modeling approach and verification[J]. Ecological Indicators,2016,61:546-557. doi: 10.1016/j.ecolind.2015.10.006 [44] TRAN N H, HU J Y, LI J H, et al. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater[J]. Water Research,2014,48:443-456. doi: 10.1016/j.watres.2013.09.053 [45] 徐祖信, 王诗婧, 尹海龙, 等.基于节点水质监测的污水管网破损位置判定方法[J]. 中国环境科学,2016,36(12):3678-3685. doi: 10.3969/j.issn.1000-6923.2016.12.020XU Z X, WANG S J, YIN H L, et al. Locating the sewer network defect based on marker investigation at pipe manholes[J]. China Environmental Science,2016,36(12):3678-3685. doi: 10.3969/j.issn.1000-6923.2016.12.020 [46] ZHAO Z C, YIN H L, XU Z X, et al. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model[J]. Water Research,2020,175:115689. doi: 10.1016/j.watres.2020.115689 [47] 董佩佩, 刘吉丹, 李怀正, 等.上海市制药行业废水特征污染因子控制指标分析[J]. 环境科学与管理,2012,37(9):67-73. doi: 10.3969/j.issn.1673-1212.2012.09.017DONG P P, LIU J D, LI H Z, et al. Analysis on characteristic pollution indicators of pharmaceutical industry wastewater in Shanghai[J]. Environmental Science and Management,2012,37(9):67-73. doi: 10.3969/j.issn.1673-1212.2012.09.017 [48] 胡成, 王彤, 苏丹, 等.水环境中污染物的源解析方法及其应用[J]. 水资源保护,2010,26(1):57-62. doi: 10.3969/j.issn.1004-6933.2010.01.015HU C, WANG T, SU D, et al. Methods for source apportionment of contaminates and their application in aquatic environment[J]. Water Resources Protection,2010,26(1):57-62. doi: 10.3969/j.issn.1004-6933.2010.01.015 [49] 吴静, 崔硕, 苏伟, 等.北京城市水体的三维荧光特征[J]. 光谱学与光谱分析,2011,31(6):1562-1566. doi: 10.3964/j.issn.1000-0593(2011)06-1562-05WU J, CUI S, SU W, et al. Fluorescence properties of urban water bodies of Beijing[J]. Spectroscopy and Spectral Analysis,2011,31(6):1562-1566. doi: 10.3964/j.issn.1000-0593(2011)06-1562-05 [50] 赵宇菲. 我国南方某工业园区废水水质指纹特征及解析[D]. 北京: 清华大学, 2016. [51] SUCHER N J, HENNELL J R, CARLES M C. Plant DNA fingerprinting and barcoding: methods and protocols[M]. Hatfield, UK: Humana Press. 2012. [52] TIMMERS P, HEIJNEN L, BULK J V D, et al. DNA fingerprinting in surface-and wastewater management[C]. Nieuwegein, The Netherlands: Qiime2 Workshop, 2017. [53] TURNBAUGH P J, LEY R E, HAMADY M, et al. The human microbiome project[J]. Nature,2007,449(7164):804-810. doi: 10.1038/nature06244 [54] KOSKEY A M, FISHER J C, EREN A M, et al. Blautia and Prevotella sequences distinguish human and animal fecal pollution in Brazil surface waters[J]. Environmental Microbiology Reports,2014,6(6):696-704. doi: 10.1111/1758-2229.12189 [55] TANG J Y, BU Y Q, ZHANG X X, et al. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water[J]. Ecotoxicology and Environmental Safety,2016,132:260-269. doi: 10.1016/j.ecoenv.2016.06.016 [56] AUGUET O, PIJUAN M T, BORREGO C M, et al. Sewers as potential reservoirs of antibiotic resistance[J]. Science of the Total Environment,2017,605/606:1047-1054. doi: 10.1016/j.scitotenv.2017.06.153 [57] SUN J, HU S H, SHARMA K R, et al. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms[J]. Applied and Environmental Microbiology,2014,80(22):7042-7052. doi: 10.1128/AEM.02146-14 [58] MCLELLAN S L, ROGUET A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters[J]. Current Opinion in Biotechnology,2019,57:34-41. ◇ doi: 10.1016/j.copbio.2018.12.010