Study on the characteristics of soil nutrients and salinization of lake wetlands in semi-arid region: taking Daihai Lake as an example
-
摘要:
为探究半干旱区湖泊湖滨带土壤养分与盐碱化特征,以典型盐化湖泊岱海为例,分析其湖滨带的草地、浅滩和盐碱地3种土地类型的土壤剖面4种养分〔有机质(OM)、碱解氮(AN)、有效磷(AP)、速效钾(AK)〕浓度、土壤钙(Ca2+)、镁(Mg2+)、交换性钾(K+)、交换性钠(Na+)、碳酸根(CO3 2−)、重碳酸根(HCO3 −)、氯(Cl−)和硫酸根(SO4 2−)离子浓度分布,结合主成分分析和冗余分析等统计学方法,研究湖滨带土壤盐碱化特征及其影响因素。结果表明:1)岱海湖滨带不同类型土壤剖面盐分空间分布差异明显,其中草地和浅滩呈明显盐分表聚现象,表层全盐量均值分别达1.99、15.27 g/kg,而盐碱地土壤10~20 cm全盐量最高(17.30 g/kg)。2)湖滨带土壤pH为8.24~8.86,在浅滩和盐碱地深层较高,而在草地的浅层较高。盐碱地与浅滩土壤均属于碱土,而草地表层土壤多属于中度碱化土,其碱化度沿深度方向降低。3种土地类型的主要盐碱化因子为Cl−、Mg2+、SO4 2−、Na+、全盐量、HCO3 −、pH、CO3 2−。3)3种土地类型的4种养分浓度基本呈随土壤深度增加而减少的趋势,其中浅滩营养元素最丰富。根据冗余分析结果,3种土地类型中大部分离子间都具有很强的相关性,AP、Mg2+与pH均具有负相关性,其他盐分与养分在不同土地类型中相关性差异较大。
Abstract:Influenced by human activities and climate change, the salinization of shallow lake wetlands in semi-arid regions is becoming worse, which threatens the health of riparian ecosystems. Daihai Lake, a typical salinized lake, was selected to analyze the distribution of four nutrients such as organic matter (OM), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP) and available potassium (AK), as well as soil calcium ion (Ca2+), magnesium ion (Mg2+), exchangeable potassium ion (K+), exchangeable sodium ion (Na+), carbonate ion (CO3 2−), bicarbonate ion (HCO3 −), chloride ion (Cl−) and sulfate ion (SO4 2−) concentrations in three types of soil profile, including riparian grassland, shoal and saline-alkali land. By statistical methods such as principal component analysis (PCA) and redundancy analysis, the salinization characteristics and influencing factors were investigated. The results showed that the difference in the spatial distribution of salts in different types of soil profile in Daihai lakeside zone was large, and there was obvious salt accumulation in grassland and shoals, with the total salt average of 1.99 g/kg and 15.27 g/kg, respectively, on the soil surface; however, the total salt content was the highest at 10-20 cm in the saline-alkali soil, with a total salt content of 17.30 g/kg. pH in the lakeside zone soil was 8.24-8.86, which was higher in the deep soil of shoal and saline-alkali land, as well as the shallow soil of grassland. According to the classification of alkalization, saline-alkali land and shoal soil belonged to alkali soil, and the surface soil of grassland was mainly moderate alkali soil, with a decline of alkalization as the soil went deeper. The major salinization factors in the three land types of Daihai Lake were Cl−, Mg2+, SO4 2−, Na+, total salt, HCO3 −, pH, and CO3 2−. The concentrations of the four nutrients showed a trend of decline with the increase of depth in the 3 types of soil. Besides, the nutrients were the most abundant in the shoal. According to redundancy analysis, a strong correlation existed between most ions in the 3 types of soil. AP and Mg2+ were negatively correlated with pH, but other salts and nutrients showed a disparity in different types of soil.
-
Key words:
- alkalinity /
- organic matter /
- soil nutrients /
- lakeside zone /
- saline soil /
- redundancy analysis
-
表 1 岱海湖滨带各采样点位海拔及土地类型
Table 1. Elevation and land types of sampling points of Daihai Lakeside
土地类型 海拔/m 土地类型区域概况 盐碱地 1 219 地表面有明显盐斑大量析出,
植被覆盖度小于5%浅滩 1 220 少量地表有盐斑析出,植被群丛主要以碱蓬草甸为主,植被覆盖度为20%~40% 草地 1 225 植被群丛主要以本氏针茅草原、小糠草草甸、苔草鹅绒委陵菜草甸为主,植被覆盖度为50%~70% 表 2 全国第二次土壤普查养分分级标准[28]
Table 2. Nutrient classification standard of the second National soil survey
土壤养分分级 OM/% AN/(mg/kg) AP/(mg/kg) AK/(mg/kg) 丰富 >4 >150 >40 >200 较丰富 3~4 120~150 20~40 150~200 中等 2~3 90~120 10~20 100~150 较缺 1~2 60~90 5~10 50~100 缺 0.6~1 30~60 3~5 30~50 极缺 <0.6 <30 <3 <30 表 3 土壤剖面中pH、全盐、ESP及SAR分布
Table 3. Distribution of pH, total salt, ESP and SAR in soil profile
土地
类型土壤深度/cm pH 全盐量/(g/kg) SAR ESP/% 盐碱
地0~10 8.24±0.23 16.63±4.31 57.16±9.56 45.54±7.42 10~20 8.36±0.09 17.30±4.10 74.05±7.21 52.09±9.21 20~30 8.36±0.04 12.92±3.91 78.14±6.11 53.44±4.45 30~40 8.66±0.12 5.60±2.88 43.93±4.12 39.01±3.54 40~50 8.67±0.02 4.59±1.89 44.14±3.11 39.13±3.12 浅滩 0~10 8.32±0.02 15.27±1.99 59.17±3.42 46.24±2.48 10~20 8.42±0.07 6.72±1.25 46.12±3.12 40.20±3.01 20~30 8.48±0.06 5.08±0.66 36.67±1.20 34.72±1.12 30~40 8.83±0.14 2.87±0.87 28.42±1.55 29.05±1.47 40~50 8.86±0.08 2.09±0.10 20.42±0.77 22.52±1.02 草地 0~10 8.86±0.20 1.99±0.22 11.26±1.10 13.4±1.31 10~20 8.80±0.13 1.15±0.14 4.58±0.88 5.25±0.91 20~30 8.49±0.05 0.75±0.18 1.76±0.65 1.34±0.81 30~40 8.48±0.02 0.70±0.09 0.90±0.08 0.08±0.01 40~50 8.39±0.06 0.61±0.05 0.82±0.12 0.05±0.02 注:表中数据为均值±标准差。 表 4 主成分因子的载荷矩阵和得分系数矩阵
Table 4. Factor load matrix and component score coefficient matrix of salt and alkali index
盐碱化指标 因子载荷矩阵(成分矩阵) 成分得分系数矩阵 主成分1 主成分2 主成分3 主成分1 主成分2 主成分3 HCO3 − −0.185 0.938 0.009 −0.026 0.531 0.008 Cl− 0.979 0.027 −0.084 0.136 0.015 −0.078 Ca2+ 0.880 −0.404 0.080 0.122 −0.229 0.074 Mg2+ 0.925 −0.121 −0.083 0.128 −0.069 −0.077 SO4 2− 0.915 0.042 0.129 0.127 0.024 0.120 K+ 0.817 0.434 −0.181 0.113 0.246 −0.168 Na+ 0.982 0.104 −0.036 0.136 0.059 −0.033 全盐量 0.988 0.077 −0.047 0.137 0.044 −0.043 ESP 0.795 0.487 0.038 0.110 0.276 0.035 pH −0.324 0.866 −0.275 −0.100 0.264 −0.256 CO3 2− −0.029 0.214 0.963 −0.004 0.121 0.894 -
[1] 郑佳佳. 基于多源卫星数据的中亚地区湖泊水量变化监测研究[D]. 南京: 南京大学, 2017. [2] 魏学.近45年达里诺尔湖面积演变对气候的响应[J]. 干旱区资源与环境,2019,33(2):110-115.WEI X. Response of Dali Lake area to climate factors in the past 45 years[J]. Journal of Arid Land Resources and Environment,2019,33(2):110-115. [3] 丹旸. 内蒙古典型草原地区内陆湖面积变化研究: 以达里诺尔湖与呼日查干淖尔湖为例[D]. 呼和浩特: 内蒙古师范大学, 2019. [4] 丁茂.内蒙古干旱、半干旱区主要生态环境问题及治理对策[J]. 内蒙古林业,2019(5):36-39. [5] 吴颜. 艾比湖水位变化对湖滨湿地荒漠化的影响研究[D]. 乌鲁木齐: 新疆师范大学, 2008. [6] 侯玉明, 王刚, 王二英, 等.河套灌区盐碱土成因、类型及有效的治理改良措施[J]. 现代农业,2011(1):92-93. doi: 10.3969/j.issn.1008-0708.2011.01.071 [7] 毛威, 杨金忠, 朱焱, 等.河套灌区井渠结合膜下滴灌土壤盐分演化规律[J]. 农业工程学报,2018,34(1):93-101. doi: 10.11975/j.issn.1002-6819.2018.01.13MAO W, YANG J Z, ZHU Y, et al. Soil salinity process of Hetao Irrigation District after application of well-canal conjunctive irrigation and mulched drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(1):93-101. doi: 10.11975/j.issn.1002-6819.2018.01.13 [8] PENG M, JIA H B, WANG Q Y. The effect of land use on bacterial communities in saline-alkali soil[J]. Current Microbiology,2017,74(3):325-333. doi: 10.1007/s00284-017-1195-0 [9] 李志. 博斯腾湖西岸湖滨绿洲土壤剖面盐分变化及其高光谱响应研究[D]. 乌鲁木齐: 新疆师范大学, 2019. [10] 王宏. 基于土地利用/覆盖类型的土壤盐渍化敏感性研究[D]. 乌鲁木齐: 新疆大学, 2011. [11] 窦旭, 史海滨, 李瑞平, 等.盐渍化土壤剖面盐分与养分分布特征及盐分迁移估算[J]. 农业机械学报,2022,53(1):279-290. doi: 10.6041/j.issn.1000-1298.2022.01.031DOU X, SHI H B, LI R P, et al. Distribution characteristics of salinity and nutrients in salinized soil profile and estimation of salt migration[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):279-290. doi: 10.6041/j.issn.1000-1298.2022.01.031 [12] 刘晓涵, 马静, 韩秋静, 等.洛阳典型植烟土壤肥力特征及其与土壤盐分关系分析[J]. 中国烟草科学,2018,39(6):21-28. doi: 10.13496/j.issn.1007-5119.2018.06.004LIU X H, MA J, HAN Q J, et al. Soil fertility and its relationship with soil salinity in tobacco-planting areas of Luoyang, Henan Province[J]. Chinese Tobacco Science,2018,39(6):21-28. doi: 10.13496/j.issn.1007-5119.2018.06.004 [13] 查向浩, 莫治新, 林宁, 等.新疆南疆绿洲-荒漠过渡带土壤盐分和养分的空间异质性[J]. 江苏农业科学,2018,46(8):250-254. doi: 10.15889/j.issn.1002-1302.2018.08.063ZHA X H, MO Z X, LIN N, et al. Spatial heterogeneity of soil salinity and soil nutrient at an oasis-desert ecotone in Southern Xinjiang[J]. Jiangsu Agricultural Sciences,2018,46(8):250-254. doi: 10.15889/j.issn.1002-1302.2018.08.063 [14] 王颖, 刘会玲, 崔江慧, 等.环渤海地区盐渍土养分及盐分离子分布特征[J]. 江苏农业科学,2016,44(1):344-348. doi: 10.15889/j.issn.1002-1302.2016.01.101 [15] 景宇鹏, 连海飞, 李跃进, 等.河套盐碱地不同利用方式土壤盐碱化特征差异分析[J]. 水土保持学报,2020,34(4):354-363. doi: 10.13870/j.cnki.stbcxb.2020.04.051JING Y P, LIAN H F, LI Y J, et al. Analysis on the difference of soil salinization characteristics in Hetao saline-alkali soil with different land use[J]. Journal of Soil and Water Conservation,2020,34(4):354-363. doi: 10.13870/j.cnki.stbcxb.2020.04.051 [16] RICHARDS L A. Diagnosis and improvement of saline and alkali soils[J]. Soil Science,1954,78(2):154. [17] BOHN H L, McNEAL B L, O'CONNOR G A. Soil chemistry[M]. New York: Wiley, 2001. [18] RENGASAMY P. Soil processes affecting crop production in salt-affected soils[J]. Functional Plant Biology,2010,37(7):613. doi: 10.1071/FP09249 [19] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. [20] 庞雪敏, 刘华民, 刘旭隆, 等.近30年岱海湖泊面积动态变化及其驱动力分析[J]. 内蒙古大学学报(自然科学版),2021,52(3):311-321. doi: 10.13484/j.nmgdxxbzk.20210313PANG X M, LIU H M, LIU X L, et al. Analysis of lake area and water level dynamic and its driving forces of Daihai lake in recent 30 years[J]. Journal of Inner Mongolia University (Natural Science Edition),2021,52(3):311-321. doi: 10.13484/j.nmgdxxbzk.20210313 [21] 王书航, 白妙馨, 陈俊伊, 等.典型农牧交错带山水林田湖草生态保护修复: 以内蒙古岱海流域为例[J]. 环境工程技术学报,2019,9(5):515-519. doi: 10.12153/j.issn.1674-991X.2019.08.050WANG S H, BAI M X, CHEN J Y, et al. Research on the ecological protection and restoration of mountain-river-forest-farmland-lake-grassland system in typical farming-pastoral ecotone: taking Daihai Lake Basin in Inner Mongolia as an example[J]. Journal of Environmental Engineering Technology,2019,9(5):515-519. doi: 10.12153/j.issn.1674-991X.2019.08.050 [22] 张燕飞, 廖梓龙, 韩振华, 等.岱海水量变化规律分析[J]. 内蒙古水利,2020(7):8-9. [23] 郭鹏程, 杨司嘉.岱海水质变化规律及成因分析[J]. 华北水利水电大学学报(自然科学版),2021,42(1):40-46. doi: 10.19760/j.ncwu.zk.2021006GUO P C, YANG S J. Analysis on the characteristics and reasons of Daihai Lake quality change[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition),2021,42(1):40-46. doi: 10.19760/j.ncwu.zk.2021006 [24] 刁瑞翔, 青松, 越亚嫘, 等.北方半干旱区典型湖泊: 岱海透明度遥感反演(2013—2020年)[J]. 湖泊科学,2021,33(4):1072-1087. doi: 10.18307/2021.0410DIAO R X, QING S, YUE Y L, et al. A typical lake in the semi-arid area of Northern China: the remote sensing retrieved of the transparency of the Lake Daihai(2013-2020)[J]. Journal of Lake Sciences,2021,33(4):1072-1087. doi: 10.18307/2021.0410 [25] 柴成武, 王理德, 尉秋实, 等.民勤青土湖区不同年限退耕地土壤水分和养分变化[J]. 水土保持研究,2020,27(5):101-105. doi: 10.13869/j.cnki.rswc.2020.05.014CHAI C W, WANG L D, YU Q S, et al. Soil moisture and nutrient changes in different years of abandoned farmlands in Qingtu district[J]. Research of Soil and Water Conservation,2020,27(5):101-105. doi: 10.13869/j.cnki.rswc.2020.05.014 [26] 张芳, 熊黑钢, 安放舟, 等.基于盐(碱)生植被盖度的土壤碱化分级[J]. 土壤学报,2012,49(4):665-672. doi: 10.11766/trxb201105220185ZHANG F, XIONG H G, AN F Z, et al. Classification of soil alkalization based on halophyte coverage[J]. Acta Pedologica Sinica,2012,49(4):665-672. doi: 10.11766/trxb201105220185 [27] 李彬, 王志春.松嫩平原苏打盐渍土碱化特征与影响因素[J]. 干旱区资源与环境,2006,20(6):183-191. doi: 10.3969/j.issn.1003-7578.2006.06.036LI B, WANG Z C. The alkalization parameters and their influential factors of saline-sodic soil in the Songnen plain[J]. Journal of Arid Land Resources and Environment,2006,20(6):183-191. doi: 10.3969/j.issn.1003-7578.2006.06.036 [28] 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. [29] 段亮, 宋永会, 郅二铨, 等.辽河保护区牛轭湖湿地恢复技术研究[J]. 环境工程技术学报,2014,4(1):18-23. doi: 10.3969/j.issn.1674-991X.2014.01.004DUAN L, SONG Y H, ZHI E Q, et al. Ecological restoration technology of oxbow lake wetlands in Liaohe conservation area[J]. Journal of Environmental Engineering Technology,2014,4(1):18-23. doi: 10.3969/j.issn.1674-991X.2014.01.004 [30] 刘德福. 生物炭对盐碱化农田土壤微环境和大豆生长的影响[D]. 大庆: 黑龙江八一农垦大学, 2020. [31] 莫朝阳. 根际激发效应对两种农田土壤中碳氮转化的影响及机制研究[D]. 杭州: 浙江大学, 2021. [32] 马文超, 于会彬, 席北斗, 等.乌梁素海湖滨带盐碱土碱化参数与特征分析[J]. 环境工程学报,2011,5(3):696-702.MA W C, YU H B, XI B D, et al. Parameters and characteristics of saline soils around Ulansuhai Nur[J]. Chinese Journal of Environmental Engineering,2011,5(3):696-702. [33] 那辉.土壤pH值与浸提液中碳酸根离子两者关系的探讨[J]. 黑龙江环境通报,2005,29(4):51-52. [34] 冯育青, 陈月琴, 阮宏华, 等.苏州太湖湖滨带不同水分梯度土壤氮的时空变异特征[J]. 华东森林经理,2010,24(1):7-14. doi: 10.3969/j.issn.1004-7743.2010.01.002FENG Y Q, CHEN Y Q, RUAN H H, et al. Variations of Temporal and Spatial Variability of Soil Nitrogen along moisture gradient of Riparian Zone of Taihu Lake in Suzhou[J]. East China Forest Management,2010,24(1):7-14. doi: 10.3969/j.issn.1004-7743.2010.01.002 [35] 张天斌.三亚市水稻秸秆还田对土壤肥力的影响[J]. 农业科技通讯,2017(11):186-188. doi: 10.3969/j.issn.1000-6400.2017.11.066 [36] 王清奎, 汪思龙, 冯宗炜, 等.土壤活性有机质及其与土壤质量的关系[J]. 生态学报,2005,25(3):513-519. doi: 10.3321/j.issn:1000-0933.2005.03.019WANG Q K, WANG S L, FENG Z W, et al. Active soil organic matter and its relationship with soil quality[J]. Acta Ecologica Sinica,2005,25(3):513-519. doi: 10.3321/j.issn:1000-0933.2005.03.019 [37] 董莉莉, 龚成霞, 苏卫国.浅谈盐碱地的修复改良[J]. 天津科技,2015,42(8):68-69. doi: 10.3969/j.issn.1006-8945.2015.08.028DONG L L, GONG C X, SU W G. On restoration and improvement of saline-alkali soil[J]. Tianjin Science & Technology,2015,42(8):68-69. doi: 10.3969/j.issn.1006-8945.2015.08.028 [38] 徐凤清.土壤速效磷含量的变化原因及影响[J]. 现代农业科技,2010(13):313. doi: 10.3969/j.issn.1007-5739.2010.13.209 [39] 王涵. 不同有机物料对滨海盐碱土改良效果的研究[D]. 长春: 吉林农业大学, 2018. [40] 顾梦鹤, 李明红, 刘调平, 等.民勤青土湖区不同土地利用类型土壤盐渍化特征[J]. 兰州大学学报(自然科学版),2021,57(1):117-121. doi: 10.13885/j.issn.0455-2059.2021.01.015GU M H, LI M H, LIU D P, et al. Soil salinization characteristics of different land-use types in the Qingtu Lake area of Minqin County[J]. Journal of Lanzhou University (Natural Sciences),2021,57(1):117-121. doi: 10.13885/j.issn.0455-2059.2021.01.015 [41] 刘素华. 盐地碱蓬中植物盐的提取及其多糖功能性的研究[D]. 天津: 天津科技大学, 2017. [42] 麦麦提吐尔逊·艾则孜, 海米提·依米提, 艾尼瓦尔·买买提, 等.天山西部伊犁河流域土壤盐分特征[J]. 环境科学研究,2010,23(6):774-781. doi: 10.13198/j.res.2010.06.111.maimttex.azz.020MAMATTURSUN E, HAMID Y, ANWAR M, et al. Characteristics of soil salinity in Ili River valley, western Tianshan Mountains[J]. Research of Environmental Sciences,2010,23(6):774-781. doi: 10.13198/j.res.2010.06.111.maimttex.azz.020 [43] 张飞, 塔西甫拉提.特依拜, 丁建丽, 等. 渭干河-库车河三角洲绿洲土壤盐渍化现状特征及其与光谱的关系[J]. 环境科学研究,2009,22(2):227-235.ZHANG F, TASHPOLAT T, DING J L, et al. Relationships between soil salinization and spectra in the delta oasis of Weigan and Kuqa Rivers[J]. Research of Environmental Sciences,2009,22(2):227-235. [44] 刘骏, 于会彬, 谢森, 等.乌梁素海周围盐化潮土钠质化特征[J]. 环境科学研究,2011,24(2):229-235. doi: 10.13198/j.res.2011.02.109.liuj.009LIU J, YU H B, XIE S, et al. Sodicity properties of saline fluvo-aquic soils around wuliangsuhai lake[J]. Research of Environmental Sciences,2011,24(2):229-235. ⊕ doi: 10.13198/j.res.2011.02.109.liuj.009