留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁改性蓝藻生物炭去除水中四环素效能及机理

殷勤 闫海红 梁雨 姜子健 年跃刚 周岳溪

殷勤,闫海红,梁雨,等.铁改性蓝藻生物炭去除水中四环素效能及机理[J].环境工程技术学报,2022,12(6):2064-2074 doi: 10.12153/j.issn.1674-991X.20210543
引用本文: 殷勤,闫海红,梁雨,等.铁改性蓝藻生物炭去除水中四环素效能及机理[J].环境工程技术学报,2022,12(6):2064-2074 doi: 10.12153/j.issn.1674-991X.20210543
YIN Q,YAN H H,LIANG Y,et al.Study on the efficiency and mechanism of iron-modified cyanobacteria biochar in removing tetracycline from water[J].Journal of Environmental Engineering Technology,2022,12(6):2064-2074 doi: 10.12153/j.issn.1674-991X.20210543
Citation: YIN Q,YAN H H,LIANG Y,et al.Study on the efficiency and mechanism of iron-modified cyanobacteria biochar in removing tetracycline from water[J].Journal of Environmental Engineering Technology,2022,12(6):2064-2074 doi: 10.12153/j.issn.1674-991X.20210543

铁改性蓝藻生物炭去除水中四环素效能及机理

doi: 10.12153/j.issn.1674-991X.20210543
基金项目: 中央公益性科研院所基本科研业务费专项(2020YSKY-011)
详细信息
    作者简介:

    殷勤(1980—),女,高级工程师,博士,主要从事农村污染控制与工业污水处理技术研究,yinqin@craes.org.cn

    通讯作者:

    年跃刚(1963—),男,研究员,博士,长期从事农村污染控制与生境改善技术研究,nianyg@craes.org.cn

    周岳溪(1963—),男,研究员,博士,主要从事工业污水处理工程与技术研究,zhouyx@craes.org.cn

  • 中图分类号: X703

Study on the efficiency and mechanism of iron-modified cyanobacteria biochar in removing tetracycline from water

  • 摘要:

    以蓝藻为原料制备生物炭,通过考察不同温度制备的蓝藻生物炭对四环素的吸附效能,筛选最优制备温度。采用液相还原法制备不同铁炭比的铁改性蓝藻生物炭,研究其对四环素的去除效能、影响因素及去除机理。结果表明:在700 ℃、铁炭质量比为1∶1条件下制备的铁改性蓝藻生物炭对四环素具有高效去除能力,60 min去除率可达87.2%,为改性前的1.2倍,吸附类型符合伪二级动力学方程(R2>0.99)。通过傅里叶红外光谱、扫描电镜、X射线光电子能谱、X射线衍射探讨铁改性蓝藻生物炭去除四环素性能与其结构的关系。结果表明,铁改性蓝藻生物炭对四环素的去除机理主要为吸附和化学降解作用,零价铁作为电子供体促进氧化还原反应的发生,含氧官能团作为电子转移桥梁在吸附降解过程中起着重要作用。影响因素试验结果表明,阴离子对铁改性蓝藻生物炭去除水中四环素效能的影响程度为SO4 2−>Cl,阳离子影响程度为Ca2+>Na+,有机质黄腐酸相对于离子强度影响程度较弱。铁改性蓝藻生物炭对四环素类抗生素具有良好的去除能力,可为蓝藻资源化提供思路。

     

  • 图  1  不同温度下制备的蓝藻生物炭对四环素的吸附量

    Figure  1.  Tetracycline adsorption capacity of cyanobacteria biochar prepared at different temperatures

    图  2  铁改性前后蓝藻生物炭吸附-脱附等温线

    Figure  2.  Adsorption and desorption isotherms of cyanobacterial biochar before and after iron modification

    图  3  Z700、nZVI@Z700、nZVI的SEM及TEM图谱

    Figure  3.  SEM of Z700, nZVI@Z700 , nZVI and TEM of nZVI@Z700

    图  4  铁改性前后蓝藻生物炭XRD图谱

    Figure  4.  XRD patterns of cyanobacterial biochar before and after iron modification

    图  5  不同铁炭比蓝藻生物炭对四环素的去除效果

    Figure  5.  Tetracycline removal efficiency by cyanobacterial biochar with different iron-carbon ratios

    图  6  nZVI@Z700、Z700、nZVI对四环素的去除效果

    Figure  6.  Removal efficiency of tetracycline by nZVI@Z700, Z700 and nZVI

    图  7  nZVI@Z700吸附四环素的拟合曲线

    Figure  7.  Fitting curve of tetracycline adsorption by nZVI@Z700

    图  8  离子及FA浓度对nZVI@Z700去除四环素的影响

    Figure  8.  Effect of ionic and FA concentration on tetracycline removing by nZVI@Z700

    图  9  nZVI@Z700投加量对四环素去除效果的影响

    Figure  9.  Effect of nZVI@Z700 dosage on tetracycline removal efficiency

    图  10  nZVI@Z700及nZVI@Z700吸附四环素后SEM图

    Figure  10.  SEM of nZVI@Z700 and after absorption of tetracycline

    图  11  nZVI@Z700吸附四环素前后红外光谱图

    Figure  11.  FT-IR of nZVI@Z700 before and after absorption of tetracycline

    图  12  nZVI@Z700吸附四环素前后XPS总谱图

    Figure  12.  XPS spectra of nZVI@Z700 before and after absorption of tetracycline

    图  13  nZVI@Z700吸附四环素前后XPS拟合

    Figure  13.  XPS fitting of nZVI@Z700 before and after absorption of tetracycline

    表  1  铁改性前后蓝藻生物炭的孔结构参数

    Table  1.   Pore structure parameters of cyanobacterial biochar before and after iron modification

    样品孔径/nm比表面积/(m2/g)孔容积/(cm3/g)
    Z7007.911 042.703 20.084 5
    nZVI@Z7008.977 770.592 00.158 4
    下载: 导出CSV

    表  2  nZVI@Z700去除四环素动力学参数

    Table  2.   Kinetic parameters of tetracycline removal by nZVI@Z700

    伪一级动力学伪二级动力学颗粒内扩散模型
    k1/
    min−1
    R2k2/
    〔(mg/(g·min)〕
    qe
    /(mg/g)
    R2ki/
    〔(mg/(g·min−1/2)〕
    R2
    0.001 1×1030.687 20.001 5×103104.167 00.999 80.605 00.569 7
    下载: 导出CSV
  • [1] TAN X F, LIU Y G, ZENG G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere,2015,125:70-85. doi: 10.1016/j.chemosphere.2014.12.058
    [2] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere,2014,99:19-33. doi: 10.1016/j.chemosphere.2013.10.071
    [3] GOSWAMI R, SHIM J, DEKA S, et al. Characterization of cadmium removal from aqueous solution by biochar produced from Ipomoea fistulosa at different pyrolytic temperatures[J]. Ecological Engineering,2016,97:444-451. doi: 10.1016/j.ecoleng.2016.10.007
    [4] LU H L, ZHANG W H, YANG Y X, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research,2012,46(3):854-862. doi: 10.1016/j.watres.2011.11.058
    [5] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107:419-428. doi: 10.1016/j.biortech.2011.11.084
    [6] QI F J, YAN Y B, LAMB D, et al. Thermal stability of biochar and its effects on cadmium sorption capacity[J]. Bioresource Technology,2017,246:48-56. doi: 10.1016/j.biortech.2017.07.033
    [7] 谢伟雪, 刘孝敏, 李小东, 等.废毛发生物炭的特性及其对Ni(Ⅱ)和Zn(Ⅱ)的吸附研究[J]. 环境工程技术学报,2018,8(6):656-661. doi: 10.3969/j.issn.1674-991X.2018.06.087

    XIE W X, LIU X M, LI X D, et al. Characteristics of waste hair biochar and its adsorption to Ni(Ⅱ) and Zn(Ⅱ)[J]. Journal of Environmental Engineering Technology,2018,8(6):656-661. doi: 10.3969/j.issn.1674-991X.2018.06.087
    [8] 罗智宇, 赵野, 胡利华, 等.太湖蓝藻治理策略探讨[J]. 环境生态学,2019,1(4):45-48.

    LUO Z Y, ZHAO Y, HU L H, et al. Discussion on algae management strategy in Taihu lake[J]. Environmental Ecology,2019,1(4):45-48.
    [9] 殷鹏, 张建华, 孔繁璠.太湖蓝藻无害化处置资源化利用现状分析与对策研究[J]. 江苏水利,2019(9):23-25.

    YIN P, ZHANG J H, KONG F F. Current situation analysis and countermeasure research on the harmless disposal and resource utilization of cyanobacteria in Taihu Lake[J]. Jiangsu Water Resources,2019(9):23-25.
    [10] YU K L, LAU B F, SHOW P L, et al. Recent developments on algal biochar production and characterization[J]. Bioresource Technology,2017,246:2-11. doi: 10.1016/j.biortech.2017.08.009
    [11] HUNG C M, HUANG C P, HSIEH S L, et al. Biochar derived from red algae for efficient remediation of 4-nonylphenol from marine sediments[J]. Chemosphere,2020,254:126916. doi: 10.1016/j.chemosphere.2020.126916
    [12] AHMED M J, OKOYE P U, HUMMADI E H, et al. High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue[J]. Bioresource Technology,2019,278:159-164. doi: 10.1016/j.biortech.2019.01.054
    [13] FAZAL T, RAZZAQ A, JAVED F, et al. Integrating adsorption and photocatalysis: a cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite[J]. Journal of Hazardous Materials,2020,390:121623. doi: 10.1016/j.jhazmat.2019.121623
    [14] YAO X X, JI L L, GUO J, et al. Magnetic activated biochar nanocomposites derived from wakame and its application in methylene blue adsorption[J]. Bioresource Technology,2020,302:122842. doi: 10.1016/j.biortech.2020.122842
    [15] 史宸菲, 李雨濛, 冯瑞杰, 等.蓝藻生物炭的制备及对过硫酸盐的活化效能[J]. 生态与农村环境学报,2017,33(12):1140-1145. doi: 10.11934/j.issn.1673-4831.2017.12.011

    SHI C F, LI Y M, FENG R J, et al. Preparation of biochar from cyanobacteria and function of the biochar for persulfate activation[J]. Journal of Ecology and Rural Environment,2017,33(12):1140-1145. doi: 10.11934/j.issn.1673-4831.2017.12.011
    [16] ZHAO Y X, CHI Y T, TIAN C, et al. Recycling of titanium-coagulated algae-rich sludge for enhanced photocatalytic oxidation of phenolic contaminants through oxygen vacancy[J]. Water Research,2020,177:115789. doi: 10.1016/j.watres.2020.115789
    [17] LIU P Y, RAO D A, ZOU L Y, et al. Capacity and potential mechanisms of Cd(Ⅱ) adsorption from aqueous solution by blue algae-derived biochars[J]. Science of the Total Environment,2021,767:145447. doi: 10.1016/j.scitotenv.2021.145447
    [18] ZENG S Q, KAN E. Chemical activation of forage grass-derived biochar for treatment of aqueous antibiotic sulfamethoxazole[J]. American Chemical Society Omega,2020,5(23):13793-13801.
    [19] LI A Y, DENG H, JIANG Y H, et al. Superefficient removal of heavy metals from wastewater by Mg-loaded biochars: adsorption characteristics and removal mechanisms[J]. Langmuir,2020,36(31):9160-9174. doi: 10.1021/acs.langmuir.0c01454
    [20] PEI X Y, PENG X X, JIA X S, et al. N-doped biochar from sewage sludge for catalytic peroxydisulfate activation toward sulfadiazine: efficiency, mechanism, and stability[J]. Journal of Hazardous Materials,2021,419:126446. doi: 10.1016/j.jhazmat.2021.126446
    [21] 李华夏, 林毅, 周小斌, 等. 生物炭负载纳米零价铁去除废水中重金属的研究进展[J]. 环境工程技术学报, 2022, 12(3): 787-793.
    LI H X, LIN Y, ZHOU X B, et al. Research progress on heavy metals removal from wastewater by biochar-supported nano zero-valent iron[J]. Journal of Environmental Engineering Technology, 2022, 12(3): 787-793.
    [22] HUO Y, LI W, MIN D, et al. Zero-valent iron nanoparticles with sustained high reductive activity for carbon tetrachloride dechlorination[J]. Royal Society of Chemistry Advances,2015,5(67):54497-54504.
    [23] 庞新宇, 刘文士, 李猛, 等.生物炭环境修复应用研究的文献计量学分析[J]. 环境工程技术学报,2021,11(4):740-749. doi: 10.12153/j.issn.1674-991X.20200261

    PANG X Y, LIU W S, LI M, et al. Research progress of biochar's application in environmental remediation based on bibliometrics[J]. Journal of Environmental Engineering Technology,2021,11(4):740-749. doi: 10.12153/j.issn.1674-991X.20200261
    [24] YING B, LIN G L, JIN L S, et al. Adsorption and degradation of 2, 4-dichlorophenoxyacetic acid in spiked soil with Fe0 nanoparticles supported by biochar[J]. Acta Agriculturae Scandinavica, Section B:Soil & Plant Science,2015,65(3):215-221.
    [25] HWANG Y H, KIM D G, SHIN H S. Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron[J]. Applied Catalysis B:Environmental,2011,105(1/2):144-150.
    [26] 冯丽, 葛小鹏, 王东升, 等.pH值对纳米零价铁吸附降解2, 4-二氯苯酚的影响[J]. 环境科学,2012,33(1):94-103.

    FENG L, GE X P, WANG D S, et al. Effects of pH value on the adsorption and degradation of 2, 4-DCP by nanoscale zero-valent iron[J]. Environmental Science,2012,33(1):94-103.
    [27] WEI J, LIU Y T, LI J, et al. Adsorption and co-adsorption of tetracycline and doxycycline by one-step synthesized iron loaded sludge biochar[J]. Chemosphere,2019,236:124254. doi: 10.1016/j.chemosphere.2019.06.224
    [28] CHEN J H, YU X L, LI C, et al. Removal of tetracycline via the synergistic effect of biochar adsorption and enhanced activation of persulfate[J]. Chemical Engineering Journal,2020,382:122916. doi: 10.1016/j.cej.2019.122916
    [29] CHENG D L, NGO H H, GUO W S, et al. Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater[J]. Science of the Total Environment,2020,720:137662. doi: 10.1016/j.scitotenv.2020.137662
    [30] LI H Q, HU J T, MENG Y, et al. An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather[J]. Science of the Total Environment,2017,603/604:39-48. doi: 10.1016/j.scitotenv.2017.06.006
    [31] SHEN L, ZHANG L H, WANG K, et al. Analysis of oxidation degree of graphite oxide and chemical structure of corresponding reduced graphite oxide by selecting different-sized original graphite[J]. Royal Society of Chemistry Advances,2018,8(31):17209-17217.
    [32] LI Y, GAO L M, LU Z X, et al. Enhanced removal of heavy metals from water by Hydrous ferric oxide-modified biochar[J]. American Chemical Society Omega,2020,5(44):28702-28711.
    [33] DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(Ⅵ) removal from aqueous solution[J]. Journal of Hazardous Materials,2017,332:79-86. doi: 10.1016/j.jhazmat.2017.03.002
    [34] PI Z J, LI X M, WANG D B, et al. Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: performance and degradation pathway[J]. Journal of Cleaner Production,2019,235:1103-1115. doi: 10.1016/j.jclepro.2019.07.037
    [35] 俞花美. 生物质炭对环境中阿特拉津的吸附解吸作用及机理研究[D]. 北京: 中国矿业大学(北京), 2014.
    [36] WANG T, XUE L, ZHENG L W, et al. Biomass-derived N/S dual-doped hierarchically porous carbon material as effective adsorbent for the removal of bisphenol F and bisphenol S[J]. Journal of Hazardous Materials,2021,416:126126. doi: 10.1016/j.jhazmat.2021.126126
    [37] 吴志坚, 刘海宁, 张慧芳.离子强度对吸附影响机理的研究进展[J]. 环境化学,2010,29(6):997-1003.

    WU Z J, LIU H N, ZHANG H F. Research progress on mechanisms about the effect of ionic strength on adsorption[J]. Environmental Chemistry,2010,29(6):997-1003.
    [38] LUO H Y, LIU Y, LU H X, et al. Efficient adsorption of tetracycline from aqueous solutions by modified alginate beads after the removal of Cu(Ⅱ) ions[J]. American Chemical Society Omega,2021,6(9):6240-6251.
    [39] PEIRIS C, GUNATILAKE S R, MLSNA T E, et al. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review[J]. Bioresource Technology,2017,246:150-159. doi: 10.1016/j.biortech.2017.07.150
    [40] DAI J W, MENG X F, ZHANG Y Z, et al. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water[J]. Bioresource Technology,2020,311:123455. doi: 10.1016/j.biortech.2020.123455
    [41] LÜTZENKIRCHEN J. Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation[J]. Journal of Colloid and Interface Science,1997,195(1):149-155. doi: 10.1006/jcis.1997.5160
    [42] WU Y W, YUE Q Y, REN Z F, et al. Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of Chloramphenicol (CAP)[J]. Journal of Molecular Liquids,2018,262:19-28. doi: 10.1016/j.molliq.2018.04.032
    [43] WANG H Z, GUO W Q, LIU B H, et al. Sludge-derived biochar as efficient persulfate activators: sulfurization-induced electronic structure modulation and disparate nonradical mechanisms[J]. Applied Catalysis B:Environmental,2020,279:119361. doi: 10.1016/j.apcatb.2020.119361
    [44] 陈华, 任晓惠, 罗汉金, 等.改性纳米零价铁的制备及其去除水中的四环素[J]. 环境工程学报,2011,5(4):767-771.

    CHEN H, REN X H, LUO H J, et al. Preparation of modified nanoscale zero-valent iron particles and its application in removal of tetracycline from wastewater[J]. Chinese Journal of Environmental Engineering,2011,5(4):767-771.
    [45] GONG C, CHEN F, YANG Q, et al. Heterogeneous activation of peroxymonosulfate by Fe-Co layered doubled hydroxide for efficient catalytic degradation of Rhoadmine B[J]. Chemical Engineering Journal,2017,321:222-232. doi: 10.1016/j.cej.2017.03.117
    [46] CHEN F, YANG Q, WANG S N, et al. Graphene oxide and carbon nitride nanosheets co-modified silver chromate nanoparticles with enhanced visible-light photoactivity and anti-photocorrosion properties towards multiple refractory pollutants degradation[J]. Applied Catalysis B:Environmental,2017,209:493-505. doi: 10.1016/j.apcatb.2017.03.026
    [47] 朱佳燕, 张漓杉, 钟山, 等.粒状纳米零价铁/炭的制备及对孔雀绿的降解机理[J]. 环境化学,2021,40(5):1514-1523. doi: 10.7524/j.issn.0254-6108.2020102103

    ZHU J Y, ZHANG L Z, ZHONG S, et al. Removal of malachite green from wastewater by zero-valent iron nanoparticles supported on activated carbon powder[J]. Environmental Chemistry,2021,40(5):1514-1523. doi: 10.7524/j.issn.0254-6108.2020102103
    [48] LAI B, ZHOU Y, YANG P, et al. Degradation of 3, 3'-iminobis-propanenitrile in aqueous solution by Fe(0)/GAC micro-electrolysis system[J]. Chemosphere,2013,90(4):1407-1477. ⊗
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  431
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-28
  • 网络出版日期:  2022-11-25

目录

    /

    返回文章
    返回