Aquatic life criteria for tetracycline and assessment for the ecological risk of some water bodies in China
-
摘要:
四环素是四环素类抗生素,环境中四环素残留会对水生生物产生慢性影响,且中国目前尚缺乏四环素的淡水水生生物基准。搜集筛选了四环素对中国淡水水生生物的急慢性毒性数据,共获得7门12科的12个急性毒性数据和7门9科的9个慢性毒性数据。利用毒性百分数排序法和物种敏感度分布法推导四环素的水生生物基准,最终采用物种敏感度分布法推导出短期水质基准为61.650 μg/L,长期水质基准为9.439 μg/L,可作为保护我国水生生物的水质基准。采用熵值法和安全阈值法评估了四环素在我国部分水体的生态风险,最终采用熵值法评估我国淡水环境中四环素的生态风险水平,评估结果显示风险区域主要集中在贵阳南明河,其他大部分区域基本无风险。研究结论可为四环素水质标准制定、水生生物保护和水生态环境管理提供科学依据。
Abstract:Tetracycline is a tetracycline antibiotic. Tetracycline residues in the environment have chronic effects on aquatic organisms. However, there were no aquatic life criteria for tetracycline in fresh water in China. The acute and chronic toxicity data of tetracycline on freshwater aquatic organisms in China were collected and screened. A total of twelve acute toxicity data from seven phyla and twelve families and nine chronic toxicity data from seven phyla and nine families were obtained. The aquatic life criteria of tetracycline were derived by toxicity percentile rank and species sensitivity distribution methods. Finally, the short-term and long-term water quality criteria of tetracycline were 61.650 and 9.439 μg/L, respectively, derived by the species sensitivity distribution method. The ecological risk of tetracycline in some water bodies in China was assessed by the entropy method and the safety threshold method, finally the entropy method was used to evaluate the ecological risk level of tetracycline in freshwater environment in China. The results of the assessment suggested that the areas surveyed with ecological risk exposed to tetracycline mainly located in the Nanming River of Guiyang Province, and most other areas were basically risk-free. The research conclusions could provide scientific basis for formulating the water quality standards in terms of tetracycline, protecting freshwater aquatic life and managing water eco-environment.
-
表 1 四环素的水生生物急性毒性值
Table 1. Acute toxicity data of tetracycline for freshwater species
物种分类 物种名 拉丁名 毒性终点/d 毒性值/
(mg/L)门 科 被子植
物门水鳖科 水蕴草[22] Egeria densa Planch 41) 0.280 金鱼藻科 金鱼藻[22] Ceratophyllum demersum L. 41) 0.298 浮萍科 浮萍[23] Lemna gibba 41) 0.723 扁形动
物门三角涡虫科 三角涡虫[24] Dugesia japonica 41) 465.111 脊索动
物门鲤科 稀有鮈鲫[25] Gobiocypris 41) 144.370 节肢动
物门溞科 大型溞[26] Daphnia magna 21) 53.593 蓝藻门 念珠藻科 鱼腥藻[27] Anabaena sp. 131) 6.200 色球藻科 铜绿微
囊藻[28]Microcystis aeruginosa 41) 10.394 绿藻门 衣藻科 小球衣藻[28] Chlamydomonas microsphaera 41) 2.038 原生动
物门草履科 尾草履虫[29] Paramecium caudatum 11) 9.122 尖毛科 浮萍棘
尾虫[29]Stylonychia lemnae 11) 40.063 喇叭科 天蓝喇
叭虫[29]Stentor coeruleus 12) 137.150 1)代表毒性终点为EC50;2)代表毒性终点为LC50。 表 2 四环素的水生生物慢性毒性值
Table 2. Chronic toxicity data of tetracycline for freshwater species
物种分类 物种名 拉丁名 毒性终点/d 毒性值/
(mg/L)门 科 绿藻门 小球藻科 近头状伪
蹄形藻[25]Pseudokirchneriella subcapitata 31) 0.125 蓝藻门 色球藻科 铜绿微
囊藻[30]Microcystis aeruginosa 211) 0.150 被子植
物门小二仙
草科狐尾藻[31] Myriophyllum sibiricum 212) 0.294 浮萍科 浮萍[30] Lemna gibba 211) 0.310 节肢动
物门溞科 大型溞[32] Daphnia magna 212) 1.212 扁形动
物门三角涡
虫科三角涡虫[30] Dugesia japonica 212) 26.994 软体动
物门贻贝科 贻贝[25] Mytilus edulis 212) 73.820 脊索动
物门鲤科 露斯塔
野鲮[33]Labeo rohita 252) 80.000 慈鲷科 奥利亚罗
非鱼[33]Oreochromis aureus 862) 94.732 1)代表毒性终点为NOEC;2)代表毒性终点为LOEC。 表 3 四环素的属平均急性值及相关计算结果
Table 3. Average acute value and related calculation results of tetracycline
属 秩次 GMAV/
(mg/L)ln GMAV (ln GMAV)2 P=R/(N+1) P的
平方根水蕴草属 1 0.280 −1.272 1.618 0.077 0.277 金鱼藻属 2 0.298 −1.212 1.469 0.154 0.392 浮萍属 3 0.723 −0.324 0.105 0.231 0.481 衣藻属 4 2.038 0.712 0.507 0.308 0.555 表 4 四环素的属平均慢性值及相关计算结果
Table 4. Average chronic value and related calculation results of tetracycline
属 秩次 GMCV/
(mg/L)ln GMCV (ln GMCV)2 P=R/(N+1) P的
平方根伪蹄形藻属 1 0.125 −2.079 4.324 0.100 0.316 微囊藻属 2 0.150 −1.897 3.599 0.200 0.447 狐尾藻属 3 0.294 −1.224 1.499 0.300 0.548 浮萍属 4 0.310 −1.171 1.372 0.400 0.632 表 5 拟合公式及相关参数
Table 5. Fitting formula and related parameters
模型 拟合公式 参数 决定系数(R2) 残差平方和(SSE) HC5/(μg/L) 短期水质基准/(μg/L) SGompertz $y = a×{ {\rm{e} }^{ - { {\rm{e} }^{ - k(x - {x_{ {0} } })} } } }$ a=1.558 42,
x0=1.326 22,
k=0.489 770.982 0.012 4 91.075 45.538 Gaussian $y = {y_0} + \dfrac{ {A{\rm{e} }\dfrac{ { - {\text{4} }{\rm{ln} }{\text{2} }{ {(x - {x_0})}^2} } }{ { {w^2} } } } }{ {w\sqrt {\dfrac{ \text{π} }{ { {\text{4} }{\rm{ln} }{\text{2} } } } } } }$ y0=1.953 30,
x0=−2.793 68,
A=−23.786 90,
w=10.812 600.980 0.012 1 124.090 62.045 Doseresp $y = {a_1} + \dfrac{ { {a_2} - {a_1} } }{ {1 + { {10}^{( {x_{ {0}} }-x )p} } } }$ a1=−0.328 82,
a2=1.640 70,
x0=1.633 90,
p=0.242 650.980 0.012 0 122.487 61.244 Boltzmann $y = {a_2} + \dfrac{ { {a_1} - {a_2} } }{ {[1 + { {\rm{e} }^{(x - {x_{ {0} } }) }] }/d} }$ a1=−0.328 82,
a2=1.640 71,
x0=1.633 90,
d=1.789 820.980 0.012 0 123.313 61.657 表 6 急慢性比率
Table 6. Ratio of acute and chronic toxicity
表 7 中国部分水体的四环素风险评估结果
Table 7. Tetracycline risk assessment result of some watersheds in China
地点 暴露浓度/
(ng/L)MEC/
(ng/L)PNEC/
(μg/L)RQ 风险评
估等级南京长江段 ND~160[38] 80 24.660 0.003 2 基本无风险 东江水系 6.12~9.27[39] 7.685 24.660 0.000 3 基本无风险 嘉陵江 ND~15[40] 7.5 24.660 0.000 3 基本无风险 长江重庆段 <5[40] 2.5 24.660 0.000 1 基本无风险 维多利亚湾 ND~313[40] 156.5 24.660 0.006 3 基本无风险 渤海湾 ND~270[40] 135 24.660 0.005 5 基本无风险 辽河流域 ND~741.85[40] 370.9 24.660 0.015 0 低风险 黄浦江 ND~219.8[40] 109.9 24.660 0.004 5 基本无风险 大辽水系 1.1~13.6[40] 7.35 24.660 0.000 3 基本无风险 贵阳南明河 6 800[41] 3 400 24.660 0.137 9 中风险 长江水域 114[30] 107 24.660 0.004 3 基本无风险 注:ND代表未检出;MEC取浓度平均值或中位数。 -
[1] FLEMING A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae[J]. Reviews of Infectious Diseases,1980,2(1):129-139. doi: 10.1093/clinids/2.1.129 [2] VALSAMATZI-PANAGIOTOU A, POPOVA K B, PENCHOVSKY R. Drug discovery for targeting drug resistant bacteria[M]//PANWAR H, SHARMA C, LICHTFOUSE E. Sustainable agriculture reviews 46. Berlin: Springer, Cham, 2020: 1-8. [3] ALNAHAS F, YEBOAH P, FLIEDEL L, et al. Expired medication: societal, regulatory and ethical aspects of a wasted opportunity[J]. International Journal of Environmental Research and Public Health,2020,17(3):787. doi: 10.3390/ijerph17030787 [4] ANH H Q, LE T P Q, DA LE N, et al. Antibiotics in surface water of East and Southeast Asian countries: a focused review on contamination status, pollution sources, potential risks, and future perspectives[J]. Science of the Total Environment,2021,764:142865. doi: 10.1016/j.scitotenv.2020.142865 [5] 敖蒙蒙, 魏健, 陈忠林, 等.四环素类抗生素环境行为及其生态毒性研究进展[J]. 环境工程技术学报,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096AO M M, WEI J, CHEN Z L, et al. Research progress on environmental behaviors and ecotoxicity of tetracycline antibiotics[J]. Journal of Environmental Engineering Technology,2021,11(2):314-324. doi: 10.12153/j.issn.1674-991X.20200096 [6] LI S, SHI W Z, LI H M, et al. Antibiotics in water and sediments of rivers and coastal area of Zhuhai City, Pearl River Estuary, South China[J]. Science of the Total Environment,2018,636:1009-1019. doi: 10.1016/j.scitotenv.2018.04.358 [7] TRAN N H, HOANG L, NGHIEM L D, et al. Occurrence and risk assessment of multiple classes of antibiotics in urban canals and lakes in Hanoi, Vietnam[J]. Science of the Total Environment,2019,692:157-174. doi: 10.1016/j.scitotenv.2019.07.092 [8] WATTS C D, CRATHORNE B, FIELDING M, et al. Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography[C]//Analysis of Organic Micropollutants in Water. Proceedings of the 1st European Symposium. Berlin, 1984: 120-131. [9] YE Z X, SHAO K L, HUANG H, et al. Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination[J]. Chemosphere,2021,270:128628. [10] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: a review[J]. Chemosphere,2020,251:126351. doi: 10.1016/j.chemosphere.2020.126351 [11] 方龙飞. 黄浦江上游典型抗生素污染特征及生态风险评估[D]. 上海: 东华大学, 2016. [12] 徐向月, 马文瑾, 安博宇, 等.四环素类抗生素在环境中的风险评估研究进展[J]. 中国畜牧兽医,2020,47(3):948-957. doi: 10.16431/j.cnki.1671-7236.2020.03.035XU X Y, MA W J, AN B Y, et al. Advances on risk assessment of tetracycline antibiotics in the environment[J]. China Animal Husbandry & Veterinary Medicine,2020,47(3):948-957. doi: 10.16431/j.cnki.1671-7236.2020.03.035 [13] GEIGER E, HORNEK-GAUSTERER R, SAÇAN M T. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris[J]. Ecotoxicology and Environmental Safety,2016,129:189-198. doi: 10.1016/j.ecoenv.2016.03.032 [14] 张姚姚, 杨再福, 汪涛, 等.地表水中氟喹诺酮类抗生素的生态风险评价与水质基准研究[J]. 环境与健康杂志,2018,35(6):531-535. doi: 10.16241/j.cnki.1001-5914.2018.06.016ZHANG Y Y, YANG Z F, WANG T, et al. Risk assessment and water quality criteria of fluoroquinolones in surface water[J]. Journal of Environment and Health,2018,35(6):531-535. doi: 10.16241/j.cnki.1001-5914.2018.06.016 [15] 黄轶, 闫振广, 张天旭, 等.我国水质基准制定中生态毒性数据质量评估方法研究[J]. 环境工程技术学报,2021,11(1):122-128. doi: 10.12153/j.issn.1674-991X.20200026HUANG Y, YAN Z G, ZHANG T X, et al. Evaluation method of ecotoxicity data quality for deriving water quality criteriain China[J]. Journal of Environmental Engineering Technology,2021,11(1):122-128. doi: 10.12153/j.issn.1674-991X.20200026 [16] 张家玮, 齐观景, 赵昊铎, 等.基于物种敏感性分布评价长三角地区地表水壬基酚生态风险[J]. 生态毒理学报,2020,15(3):134-148.ZHANG J W, QI G J, ZHAO H D, et al. Ecological risk assessment of nonylphenol in surface waters of the Yangtze River Delta based on species sensitivity distribution model[J]. Asian Journal of Ecotoxicology,2020,15(3):134-148. [17] 陈丽红, 张瑜, 丁婷婷, 等.红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报,2020,29(8):1610-1616.CHEN L H, ZHANG Y, DING T T, et al. Development of aquatic life criteria for erythromycin and preliminary assessment for the ecological risk of some water bodies in China[J]. Ecology and Environmental Sciences,2020,29(8):1610-1616. [18] 艾舜豪, 李霁, 王晓南, 等.太湖双酚A的水质基准研究及风险评价[J]. 环境科学研究,2020,33(3):581-588.AI S H, LI J, WANG X N, et al. Water quality criteria and risk assessment of bisphenol A in Taihu Lake[J]. Research of Environmental Sciences,2020,33(3):581-588. [19] 陈莹, 赵晓光.西安市典型河流中4种抗生素的生态风险评价[J]. 环境污染与防治,2021,43(5):626-630.CHEN Y, ZHAO X G. Ecological risk assessment of four antibiotics in typical rivers of Xi'an[J]. Environmental Pollution & Control,2021,43(5):626-630. [20] 汪浩, 冯承莲, 郭广慧, 等.我国淡水水体中双酚A(BPA)的生态风险评价[J]. 环境科学,2013,34(6):2319-2328.WANG H, FENG C L, GUO G H, et al. Ecological risk assessment of bisphenol A in Chinese freshwaters[J]. Environmental Science,2013,34(6):2319-2328. [21] 郭渊, 杨明儒, 何佳, 等.水体硬度对锌的水质基准及生态风险评估的影响[J]. 环境科学研究,2021,34(10):2497-2508.GUO Y, YANG M R, HE J, et al. Effect of hardness on water quality criteria and ecological risk assessment of zinc[J]. Research of Environmental Sciences,2021,34(10):2497-2508. [22] HANSON M L, KNAPP C W, GRAHAM D W. Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L.[J]. Environmental Pollution,2006,141(3):434-442. doi: 10.1016/j.envpol.2005.08.068 [23] BRAIN R A, JOHNSON D J, RICHARDS S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry,2004,23(2):371-382. doi: 10.1897/02-576 [24] LI M H. Acute toxicity of 30 pharmaceutically active compounds to freshwater planarians, Dugesia japonica[J]. Toxicological & Environmental Chemistry,2013,95(7):1157-1170. [25] 杨灿. 典型抗生素对水生生物的毒性效应及生态风险阈值研究[D]. 上海: 华东理工大学, 2019. [26] KIM H Y, YU S, JEONG T Y, et al. Relationship between trans-generational effects of tetracycline on Daphnia magna at the physiological and whole organism level[J]. Environmental Pollution,2014,191:111-118. doi: 10.1016/j.envpol.2014.04.022 [27] GONZÁLEZ-PLEITER M, GONZALO S, RODEA-PALOMARES I, et al. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: implications for environmental risk assessment[J]. Water Research,2013,47(6):2050-2064. doi: 10.1016/j.watres.2013.01.020 [28] 周旭东. 四环素类、磺胺类抗生素对铜绿微囊藻和小球衣藻的影响研究[D]. 杨凌: 西北农林科技大学, 2017. [29] 赵也. 两种四环素类抗生素对三种纤毛虫的毒性效应研究[D]. 哈尔滨: 哈尔滨师范大学, 2017. [30] 朱小奕. 水生态的物种敏感性风险评价方法改进及应用[D]. 杭州: 浙江大学, 2017. [31] BRAIN R A, WILSON C J, JOHNSON D J, et al. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms[J]. Environmental Pollution,2005,138(3):425-442. doi: 10.1016/j.envpol.2005.04.021 [32] KIM H Y, LEE M J, YU S H, et al. The individual and population effects of tetracycline on Daphnia magna in multigenerational exposure[J]. Ecotoxicology,2012,21(4):993-1002. doi: 10.1007/s10646-012-0853-z [33] 杜翠红. 中国抗生素类化学品足迹的计算及表征研究[D]. 大连: 大连理工大学, 2017. [34] SOUSA C A, SOARES H M V M, SOARES E V. Toxic effects of nickel oxide (NiO) nanoparticles on the freshwater alga Pseudokirchneriella subcapitata[J]. Aquatic Toxicology,2018,204:80-90. doi: 10.1016/j.aquatox.2018.08.022 [35] LEE B Y, CHOI B S, KIM M S, et al. The genome of the freshwater water flea Daphnia magna: a potential use for freshwater molecular ecotoxicology[J]. Aquatic Toxicology,2019,210:69-84. doi: 10.1016/j.aquatox.2019.02.009 [36] 余晓玲. 猪场废水中四环素类抗生素对斑马鱼抗氧化效应毒理研究[D]. 南昌: 南昌大学, 2019. [37] 张志霞, 王斌, 袁宏林, 等.运用物种敏感度分布法推导磺胺类药物的水质基准[J]. 环境科学与技术,2016,39(12):184-188.ZHANG Z X, WANG B, YUAN H L, et al. Deriving aquatic water quality criteria for sulfonamides by species sensitivity distributions[J]. Environmental Science & Technology,2016,39(12):184-188. [38] 李辉, 陈瑀, 封梦娟, 等.南京市饮用水源地抗生素污染特征及风险评估[J]. 环境科学学报,2020,40(4):1269-1277.LI H, CHEN Y, FENG M J, et al. Pollution characteristics and risk assessment of antibiotics in Nanjing drinking water sources[J]. Acta Scientiae Circumstantiae,2020,40(4):1269-1277. [39] 谢全模, 陈云, 万金泉, 等.东莞市饮用水源地中抗生素分布特征及风险评价[J]. 环境科学学报,2020,40(1):166-178. doi: 10.13671/j.hjkxxb.2019.0334XIE Q M, CHEN Y, WAN J Q, et al. Occurrence, distribution and risk assessment of antibiotics in drinking water source in Dongguan[J]. Acta Scientiae Circumstantiae,2020,40(1):166-178. doi: 10.13671/j.hjkxxb.2019.0334 [40] 陈思祎. 典型饮用水源地抗生素污染特征及风险研究[D]. 南京: 南京理工大学, 2018. [41] 刘娜. 典型PPCPs繁殖毒性效应与水生态风险评价[D]. 北京: 中国地质大学(北京), 2016. [42] BAI Y W, MENG W, XU J, et al. Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China[J]. Environmental Science Processes & Impacts,2014,16(3):586-593. [43] 刘虹, 张国平, 刘丛强, 等.贵阳城市污水及南明河中氯霉素和四环素类抗生素的特征[J]. 环境科学,2009,30(3):687-692. doi: 10.3321/j.issn:0250-3301.2009.03.011LIU H, ZHANG G P, LIU C Q, et al. Characteristics of chloramphenicol and tetracyclines in municipal sewage and Nanming River of Guiyang City, China[J]. Environmental Science,2009,30(3):687-692. doi: 10.3321/j.issn:0250-3301.2009.03.011 [44] VERMA B, HEADLEY J V, ROBARTS R D. Behaviour and fate of tetracycline in river and wetland waters on the Canadian Northern Great Plains[J]. Journal of Environmental Science and Health, Part A,2007,42(2):109-117. doi: 10.1080/10934520601011163 [45] 孔凡星, 许霞, 薛银刚, 等.微塑料老化对四环素吸附行为的影响[J]. 环境科学研究,2021,34(9):2182-2190. doi: 10.13198/j.issn.1001-6929.2021.05.04KONG F X, XU X, XUE Y G, et al. Effect of aging on adsorption of tetracycline by microplastics[J]. Research of Environmental Sciences,2021,34(9):2182-2190. doi: 10.13198/j.issn.1001-6929.2021.05.04 [46] WANG Z Y, CHEN Q W, ZHANG J Y, et al. Characterization and source identification of tetracycline antibiotics in the drinking water sources of the Lower Yangtze River[J]. Journal of Environmental Management,2019,244:13-22. doi: 10.1016/j.jenvman.2019.04.070 [47] 汪涛, 杨再福, 陈勇航, 等.地表水中磺胺类抗生素的生态风险评价[J]. 生态环境学报,2016,25(9):1508-1514. doi: 10.16258/j.cnki.1674-5906.2016.09.013WANG T, YANG Z F, CHEN Y H, et al. Ecological risk assessment for sulfonamides in surface waters[J]. Ecology and Environmental Sciences,2016,25(9):1508-1514. ◇ doi: 10.16258/j.cnki.1674-5906.2016.09.013