Physicochemical properties and heavy metal pollution characteristics of incineration fly ash before and after refuse classification
-
摘要:
以上海市某垃圾焚烧厂焚烧飞灰为调查对象,分析垃圾分类前后飞灰的理化性质及重金属污染特性。结果表明:垃圾分类后飞灰表面积和孔容明显降低,氯化物含量也大幅降低;除Zn、Cu外,飞灰中其他重金属含量在垃圾分类后均增加,其中Pb浸出浓度远高于GB 16889—2008《生活垃圾填埋场污染控制标准》的浓度限值,环境风险较大,必须对该飞灰进行无害化处置;由于飞灰中Pb、Cd、Zn含量和不稳定形态的变化,其在酸性条件下的浸出浓度显著增高,对环境的潜在威胁较大。
Abstract:The physiochemical properties and heavy metal pollution characteristics of fly ash from a waste incineration plant in Shanghai were studied and analyzed. The results showed that the fly ash surface area and pore volume decreased obviously, and the chloride content also decreased greatly after refuse classification. Except Zn and Cu, the contents of other heavy metals increased after refuse classification, and the leaching concentration of Pb was far higher than the concentration limit of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste (GB 16889-2008), which was of high environmental risk. Therefore, the fly ash must be disposed of harmlessly. Due to the change of Pb, Cd, Zn contents and their unstable forms, the leaching concentrations under acidic condition increased significantly which posed a great potential threat to the environment.
-
Key words:
- refuse classification /
- fly ash /
- physicochemical property /
- leaching toxicity /
- heavy metal
-
表 1 连续浸提方法
Table 1. Sequential extraction procedure
重金属形态 浸提试剂 分析条件 可交换态 8 mL 1 mol/L MgCl2(pH=7.0) 常温下连续振荡2 h 碳酸盐结合态 8 mL 1 mol/L NaAc(pH=5.0) 常温下连续振荡5 h 铁锰氧化态 20 mL 0.04 mol/L NH2OH·HCl 95 ℃下浸提6 h 有机结合态 3 mL 0.02 mol/L HNO3, 8 mL 30%H2O2, 5 mL NH4Ac(20%HNO3) 85 ℃下浸提5 h,
常温30 min残渣态 HCl+HNO3+HF+HClO4 石墨炉/微波消解 表 2 飞灰的比表面积和孔容
Table 2. Specific surface area and pore volume of fly ash
飞灰样品 比表面积/(m2/g) 孔容/(cm3/g) 垃圾分类前 23.35 0.05 垃圾分类后 13.81 0.03 表 3 飞灰溶解度及电导率
Table 3. Water solubility and ET of fly ash
项目 总量/
g残渣/
g总溶解固体/
g溶解度/
%电导率/
(mS/cm)垃圾分类前 10.01 4.52 5.49 54.85 110.63 垃圾分类后 10.00 6.39 3.61 36.10 75.93 表 4 飞灰重金属含量
Table 4. Contents of heavy metals in fly ash
重金属 垃圾分类前重金属
含量/(mg/kg)垃圾分类后重金属
含量/(mg/kg)Cr 143.57 528.59 Fe 2 596.24 26 171.08 Ni 41.16 195.40 Cu 3 714.52 928.64 Zn 14 611.46 8 284.44 Cd 9.72 137.86 As 38.09 689.96 Pb 990.96 3 003.75 表 5 醋酸浸提飞灰重金属的浸出情况
Table 5. Leaching of heavy metals in fly ash extracted by acetic acid
项目 Cr Ni Cu Zn Cd Pb 浸出液pH 垃圾分类前 浸出浓度/(mg/L) 0.040 0.024 1.493 3.162 0.038 95 4.675 12.27 浸出量/(mg/kg) 0.805 0.473 29.863 63.243 0.779 93.492 浸出率/% 0.561 1.148 0.804 0.433 8.013 9.434 垃圾分类后 浸出浓度/(mg/L) 0.207 0.016 0.194 1.721 0.022 19.431 12.28 浸出量/(mg/kg) 4.130 0.321 3.888 34.412 0.449 388.613 浸出率/% 0.781 0.164 0.419 0.415 0.326 12.938 GB 16889—2008 浓度限值/(mg/L) 4.5 0.5 40 100 0.15 0.25 表 6 硫酸硝酸浸提飞灰重金属的浸出情况
Table 6. Leaching of heavy metals in fly ash extracted with sulfuric acid and nitric acid
项目 Cr Ni Cu Zn Cd Pb 浸出液pH 垃圾分类前 浸出浓度/(mg/L) 0.081 0.026 1.239 4.139 0.038 7.168 12.20 浸出量/(mg/kg) 0.813 0.261 12.388 41.392 0.384 71.679 浸出率/% 0.566 0.634 0.334 0.283 3.946 7.233 垃圾分类后 浸出浓度/(mg/L) 0.201 0.024 0.232 1.589 0.027 26.634 12.33 浸出量/(mg/kg) 2.012 0.238 2.322 15.886 0.269 266.343 浸出率/% 0.381 0.122 0.250 0.192 0.195 8.867 GB 16889—2008 浓度限值/(mg/L) 4.5 0.5 40 100 0.15 0.25 表 7 水平振荡浸提飞灰重金属的浸出情况
Table 7. Leaching of heavy metals in fly ash by horizontal oscillation leaching
项目 Cr Ni Cu Zn Cd Pb 浸出液pH 垃圾分类前 浸出浓度/(mg/L) 0.080 0.020 1.276 3.531 0.039 6.994 12.10 浸出量/(mg/kg) 0.798 0.198 12.759 35.306 0.387 69.935 浸出率/% 0.556 0.481 0.343 0.242 3.982 7.057 垃圾分类后 浸出浓度/(mg/L) 0.219 0.023 0.227 1.593 0.013 25.826 12.16 浸出量/(mg/kg) 2.193 0.226 2.266 15.926 0.129 258.260 浸出率/% 0.415 0.116 0.244 0.192 0.094 8.598 GB 16889—2008 浓度限值/(mg/L) 4.5 0.5 40 100 0.15 0.25 -
[1] LAM C H K, IP A W M, BARFORD J P, et al. Use of incineration MSW ash: a review[J]. Sustainability,2010,2(7):1943-1968. doi: 10.3390/su2071943 [2] CHENG H F, HU Y A. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China[J]. Bioresource Technology,2010,101(11):3816-3824. doi: 10.1016/j.biortech.2010.01.040 [3] WANG X X, ZHANG L, ZHU K Y, et al. Distribution and chemical species transition behavior of chlorides in municipal solid waste incineration fly ash during the pressure-assisted sintering treatment[J]. Chemical Engineering Journal,2021,415:128873. doi: 10.1016/j.cej.2021.128873 [4] 国家统计局工业统计司. 中国工业统计年鉴2020[M]. 北京: 中国统计出版社, 2020. [5] 吴昊, 刘宏博, 田书磊, 等.城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083WU H, LIU H B, TIAN S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration[J]. Journal of Environmental Engineering Technology,2021,11(5):1034-1040. doi: 10.12153/j.issn.1674-991X.20210083 [6] QUINA M J, BORDADO J C, QUINTA-FERREIRA R M. Treatment and use of air pollution control residues from MSW incineration: an overview[J]. Waste Management,2008,28(11):2097-2121. doi: 10.1016/j.wasman.2007.08.030 [7] MA W C, CHEN D M, PAN M H, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management,2019,247:169-177. [8] TANG Q, LIU Y, GU F, et al. Solidification/stabilization of fly ash from a municipal solid waste incineration facility using Portland cement[J]. Advances in Materials Science and Engineering,2016,2016:7101243. [9] FAN W D, LIU B, LUO X, et al. Production of glass-ceramics using municipal solid waste incineration fly ash[J]. Rare Metals,2019,38(3):245-251. doi: 10.1007/s12598-017-0976-8 [10] ZHU J X, ZHAO L J, CHEN M J, et al. Removal of heavy metals from hazardous waste incinerator fly ash by vacuum-aided heat treatment[J]. Environmental Engineering Science,2011,28(10):743-748. doi: 10.1089/ees.2010.0314 [11] 陈清, 汪屈峰, 李艳, 等.华南某垃圾焚烧厂焚烧飞灰理化特性及重金属形态研究[J]. 环境卫生工程,2019,27(4):13-18. doi: 10.3969/j.issn.1005-8206.2019.04.003CHEN Q, WANG Q F, LI Y, et al. Research on physico-chemical characteristics and heavy metal fraction in fly ash from a MSW incineration plant in South China[J]. Environmental Sanitation Engineering,2019,27(4):13-18. doi: 10.3969/j.issn.1005-8206.2019.04.003 [12] 席北斗, 王琪, 姜永海, 等.垃圾焚烧飞灰熔融渣特性分析[J]. 环境科学研究,2005,18(6):110-112. doi: 10.3321/j.issn:1001-6929.2005.06.026XI B D, WANG Q, JIANG Y H, et al. Characteristics of melting slag of fly ash from municipal solid waste incinerator[J]. Research of Environmental Sciences,2005,18(6):110-112. doi: 10.3321/j.issn:1001-6929.2005.06.026 [13] 章骅. 城市生活垃圾焚烧灰渣重金属源特征及归趋[D]. 上海: 同济大学, 2006. [14] 贾悦, 王震, 夏苏湘, 等.上海市生活垃圾重金属来源分析及污染风险评价[J]. 环境卫生工程,2015,23(4):31-34. doi: 10.3969/j.issn.1005-8206.2015.04.010JIA Y, WANG Z, XIA S X, et al. Source analysis and pollution risk assessment of heavy metals from Shanghai domestic waste[J]. Environmental Sanitation Engineering,2015,23(4):31-34. doi: 10.3969/j.issn.1005-8206.2015.04.010 [15] 上海市生活垃圾管理条例[A]. 上海: 上海市绿化和市容管理局, 2019. [16] 市绿化市容局2019年重点工作推进情况[A]. 上海: 上海市绿化和市容管理局, 2020. [17] 二〇二〇年上海市固体废物污染环境防治信息公告[A]. 上海: 上海市生态环境局, 2021. [18] 国家环境保护局.工业固体废物采样制样技术规范: HJ/T 20—1998[S]. 北京: 中国标准出版社, 1998. [19] 国家环境保护总局. 固体废物 浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300—2007[S]. 北京: 中国环境科学出版社, 2007. [20] 国家环境保护总局. 固体废物 浸出毒性浸出方法 硫酸硝酸法: HJ/T 299—2007[S]. 北京: 中国环境科学出版社, 2007. [21] 环境保护部. 固体废物浸出毒性浸出方法 水平振荡法: HJ 557—2010[S]. 北京: 中国环境科学出版社, 2010. [22] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844-851. doi: 10.1021/ac50043a017 [23] 田志鹏, 田海燕, 张冰如.城市生活垃圾焚烧飞灰物化性质及重金属污染特性[J]. 环境污染与防治,2016,38(9):80-85.TIAN Z P, TIAN H Y, ZHANG B R. The physiochemical properties and heavy metal pollution of fly ash from municipal solid waste incineration[J]. Environmental Pollution & Control,2016,38(9):80-85. [24] 刘国锋, 徐增洪, 么宗利, 等.冲水灌溉对西北硫酸盐型土壤中盐分离子变化的影响研究[J]. 干旱区资源与环境,2019,33(3):118-123.LIU G F, XU Z H, YAO Z L, et al. Effects of irrigation on the salt ions in sulfate-type saline-alkali soil[J]. Journal of Arid Land Resources and Environment,2019,33(3):118-123. [25] 李兵, 刘广明, 苏里坦, 等.基于磁感式大地电导率仪的土壤盐分解译模型[J]. 土壤,2017,49(4):789-794.LI B, LIU G M, SU L T, et al. Interpretation model of soil salinity based on electrical conductivity meter of electromagnetic induction[J]. Soils,2017,49(4):789-794. [26] XUAN D X, TANG P, POON C S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications: a review[J]. Construction and Building Materials,2018,190:1091-1102. doi: 10.1016/j.conbuildmat.2018.09.174 [27] ZHAO K X, HU Y Y, TIAN Y Y, et al. Chlorine removal from MSWI fly ash by thermal treatment: effects of iron/aluminum additives[J]. Journal of Environmental Sciences,2020,88:112-121. doi: 10.1016/j.jes.2019.08.006 [28] WONG S, MAH A X Y, NORDIN A H, et al. Emerging trends in municipal solid waste incineration ashes research: a bibliometric analysis from 1994 to 2018[J]. Environmental Science and Pollution Research,2020,27(8):7757-7784. doi: 10.1007/s11356-020-07933-y [29] 宋立杰, 赵由才.垃圾焚烧飞灰中重金属的形成机理[J]. 上海环境科学,2003(增刊2):140-142. [30] 叶秀雅. 生活垃圾焚烧飞灰的特性及其与垃圾渗滤液的联合处理[D]. 广州: 华南理工大学, 2012. [31] WANG K S, CHIANG K Y, LIN S M, et al. Effects of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere,1999,38(8):1833-1849. doi: 10.1016/S0045-6535(98)00398-1 [32] ZHANG Y G, CHEN Y, MENG A H, et al. Experimental and thermodynamic investigation on transfer of cadmium influenced by sulfur and chlorine during municipal solid waste (MSW) incineration[J]. Journal of Hazardous Materials,2008,153(1/2):309-319. [33] 吕晓蕾, 韦琳, 刘阳生, 等.不同氯化物作用下垃圾焚烧飞灰中重金属挥发特性研究[J]. 北京大学学报(自然科学版),2012,48(1):133-138.LÜ X L, WEI L, LIU Y S, et al. Effect of chlorine-containing compounds on evaporation of heavy metals in secondary gasification of fly ash from municipal solid waste incinerator[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2012,48(1):133-138. [34] 刘娜, 李丽, 周炳炎, 等.我国包装废物的分类收集模式[J]. 环境科学研究,2011,24(7):812-818.LIU N, LI L, ZHOU B Y, et al. Separate collection modes for packaging waste in China[J]. Research of Environmental Sciences,2011,24(7):812-818. [35] 沈东升, 郑元格, 姚俊, 等.典型固体废物焚烧飞灰的污染物特性研究[J]. 环境科学,2011,32(9):2610-2616.SHEN D S, ZHENG Y G, YAO J, et al. Analysis of pollution characteristics of solid waste incinerator fly ash in Zhejiang Province[J]. Environmental Science,2011,32(9):2610-2616. [36] 何品晶, 吴长淋, 章骅, 等.生活垃圾焚烧飞灰及其稳定化产物的长期浸出行为[J]. 环境化学,2008,27(6):786-790. doi: 10.3321/j.issn:0254-6108.2008.06.018HE P J, WU C L, ZHANG H, et al. The long-term leaching behavior of air pollution control residues and its treatment products[J]. Environmental Chemistry,2008,27(6):786-790. doi: 10.3321/j.issn:0254-6108.2008.06.018 [37] 环境保护部. 生活垃圾填埋场污染控制标准: GB 16889—2008[S]. 北京: 中国环境科学出版社, 2008. [38] ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel,2016,184:815-825. doi: 10.1016/j.fuel.2016.07.089 [39] 李朝辉. 垃圾焚烧飞灰中重金属的浸出特性及化学稳定研究[D]. 重庆: 重庆大学, 2017. [40] 周言凤, 苏庆平.土壤重金属形态分析研究综述[J]. 广东化工,2018,45(22):84-85. doi: 10.3969/j.issn.1007-1865.2018.22.039ZHOU Y F, SU Q P. The review of the research for morphological analysis of heavy metal in the soil[J]. Guangdong Chemical Industry,2018,45(22):84-85. doi: 10.3969/j.issn.1007-1865.2018.22.039 [41] ZHANG M, YANG C M, JING Y C, et al. Effect of energy grass on methane production and heavy metal fractionation during anaerobic digestion of sewage sludge[J]. Waste Management,2016,58:316-323. doi: 10.1016/j.wasman.2016.09.040 [42] 杨新明, 庄涛, 韩磊, 等.小清河污灌区农田土壤重金属形态分析及风险评价[J]. 环境化学,2019,38(3):644-652. doi: 10.7524/j.issn.0254-6108.2018051001YANG X M, ZHUANG T, HAN L, et al. Fraction distribution and ecological risk assessment of soil heavy metals in the farmland soil from the sewage irrigated area of Xiaoqing River[J]. Environmental Chemistry,2019,38(3):644-652. □ doi: 10.7524/j.issn.0254-6108.2018051001