Study of odor pollution characteristics of bio-chemical processor treatment of kitchen waste
-
摘要:
以上海某基于餐厨垃圾生化处理机工艺的企业为研究对象,通过筛选餐厨垃圾关键测试物质,测试案例企业各处理工艺有组织排放口、厂区及厂界无组织排放中的挥发性有机物(VOCs)及恶臭物质情况,结合异味活度(OAV)指标评价识别典型恶臭物质,深入分析餐厨垃圾好氧生化处理机企业的恶臭污染特征及关键影响因素。结果表明:VOCs及恶臭物质浓度表现为预处理车间>生化车间>深加工车间,排放成分主要为醇类、羰基类、硫化物和芳香烃等有机物;主要的恶臭物质为乙硫醇、丁硫醇、甲硫醇和乙硫醚等硫化物;废水处理设施是案例企业恶臭产生的潜在主要来源之一,包括废水厌氧罐的沼气泄漏、废水处理设施的无组织臭气逸散等;餐厨垃圾好氧生化处理类型企业对周边的恶臭污染与其生产工序具有显著关系。建议同类型企业可通过减少无组织臭气排放环节、建立沼气泄漏定期检测与应急管理制度、提高末端装置运行效果等方面缓解恶臭污染问题。
Abstract:A kitchen waste enterprise adopting bio-chemical processor treatment in Shanghai was selected as the research object. The odor pollution characteristics and key influencing factors of kitchen waste enterprises adopting aerobic biochemical processor treatment were deeply analyzed by screening the key test substances of the kitchen wastes, monitoring VOCs and odorous substances from the exhaust outlets of all treatment processes and the fugitive emission of factory area and boundary, and identifying typical odorous substances based on the evaluation of their odor activity value (OAV). The results showed that the concentration of VOCs and odorous substances was sorted as pretreatment workshop, biochemical workshop, and deep processing workshop from high to low, and the emission components were mainly organic substances such as alcohols, carbonyls, sulfides and aromatic hydrocarbons. The major odorous substances were sulfides such as ethyl mercaptan, butyl mercaptan, methyl mercaptan and ethyl sulfide. The wastewater treatment facilities were the main potential sources of odor, including the leakage of biogas in the anaerobic wastewater tank and the escape of fugitive odor from wastewater treatment facilities, etc. The surrounding odor pollution of the kitchen waste enterprise adopting aerobic biochemical treatment had a significant relationship with their production processes. It was suggested that enterprises of the same type could alleviate the odor pollution problem by reducing fugitive odor emission links, establishing regular biogas leakage detection and emergency management system, and improving the operation effect of deodorization devices.
-
表 1 测试方法与仪器
Table 1. Testing methods and instruments
检测
点位采样及
检测时间检测方法 仪器型号 仪器厂商 检测指标 样品数量/个 测试参数 废气
排口09:00—17:00 SIFT-MS技术 SYFT VOICE 200型选择离子流动管质谱分析仪 新西兰 Syft
公司VOCs及恶臭物质浓度 15 在选择离子模式下,以H3O+、NO+、O2 +作为初始离子;扫描时间为60 s;延迟计算时间5 s;样品测定时间90 s;进口温度120 ℃;氮气为载气,载气压力为300 kPa。每个排气筒采集5个平行样,单个样品扫描3次 厂界环境空气 16:00—次日16:00 SIFT-MS技术 SYFT VOICE 200型选择离子流动管质谱分析仪 新西兰 Syft
公司主要恶臭物质浓度 242 在选择离子模式下,以H3O+、NO+、O2+作为初始离子开展扫描,间隔5 min采样扫描,单个样品扫描1次。实时测试24 h 废气
排口09:00—17:00 三点比较式臭袋法 人工嗅辨 臭气浓度 18 采集3个平行样 厂区环境空气 09:00—17:00 传感器测试技术 OdoTracker TR8 加拿大Scentroid公司 硫化氢浓度 80 内置2个传感器,分辨率分别为10−3和1 μmol/mol,每个点位测试5次,选取最大值 废水处理厌
氧罐共检测3次,分别为09:00、13:00、17:00 FTIR技术 GF300气体成像型红外热像仪 美国FLIR Systems公司 红外扫描图 15 精度为温度范围(0~100 ℃)的±1 ℃或者温度范围读数(>100 ℃)的±2%,对CH4泄漏的检出限为0.8 g/h。每次扫描10 min以上,选取有效扫描截图 测试物质 CAS号 嗅阈值/(μmol/mol) 测试物质 CAS号 嗅阈值/(μmol/mol) 测试物质 CAS号 嗅阈值/(μmol/mol) 正丁醇 71-36-3 0.066 四氯化碳 56-23-5 甲醛 50-00-0 0.5 1-丙醇 71-23-8 0.094 氯苯 108-90-7 甲基异丁酮 108-10-1 2-丁醇 78-92-2 0.22 异戊酸 503-74-2 0.000 16 戊醛 110-62-3 0.001 6 巴豆醛 4170-30-3 乙酸 64-19-7 0.006 丙醛 123-38-6 0.016 2-戊醇 6032-29-7 0.29 丙烯酸 79-10-7 丙酮 67-64-1 乙醇 64-17-5 0.1 丁酸 107-92-6 0.001 3 庚烷 142-82-5 乙二醇 107-21-1 正戊酸 109-52-4 0.002 5 己烷 110-54-3 甲醇 67-56-1 丙酸 79-09-4 0.008 7 异戊烷 78-78-4 苯乙烯 100-42-5 0.034 二甲醚 115-10-6 正辛烷 111-65-9 苯 71-43-2 丁硫醇 109-79-5 0.000 002 8 1,3-丁二烯 106-99-0 乙苯 100-41-4 0.018 二硫化碳 75-15-0 0.17 1-丁烯 106-98-9 0.36 异丙苯 98-82-8 0.008 4 乙硫醚 352-93-2 0.000 033 α-蒎烯 80-56-8 0.001 萘 91-20-3 二甲基二硫醚 624-92-0 0.011 柠檬烯 138-86-3 0.016 苯酚 108-95-2 0.005 6 甲硫醚 75-18-3 0.002 丙烯 115-07-1 甲苯 108-88-3 0.098 乙硫醇 75-08-1 0.000 008 7 四氯乙烯 127-18-4 氨 7664-41-7 0.3 硫化氢 7783-06-4 0.001 2 乙酸异丙酯 108-21-4 环己胺 108-91-8 甲硫醇 74-93-1 0.000 067 乙酸丁酯 123-86-4 0.007 9 二乙胺 109-89-7 0.048 异戊醛 590-86-3 0.000 3 乙酸乙酯 141-78-6 二甲胺 124-40-3 0.033 乙醛 75-07-0 0.018 乙酸己酯 142-92-7 0.001 8 一甲胺 74-89-5 0.035 丙烯醛 107-02-8 0.003 6 乙酸异丁酯 110-19-0 吡啶 110-86-1 苯甲醛 100-52-7 丙烯酸甲酯 96-33-3 0.003 5 三乙胺 121-44-8 丁醛 123-72-8 0.000 85 甲基丙烯酸甲酯 80-62-6 三甲胺 75-50-3 0.000 9 丁酮 78-93-3 0.17 乙酸丙酯 109-60-4 苄基氯 100-44-7 环己酮 108-94-1 表 3 各车间废气排放口前10污染物浓度
Table 3. Mass concentration of top 10 pollutants of exhaust outlets of each workshop
排名 预处理车间 生化车间 深加工车间 污染物 浓度/
(mg/m3)污染物 浓度/
(mg/m3)污染物 浓度/
(mg/m3)1 乙醇 2.52 乙醇 1.30 苯酚 0.27 2 1-丙醇 1.67 乙醛 0.79 二甲基二硫醚 0.26 3 乙醛 1.62 甲醇 0.59 乙醛 0.16 4 丙烯酸 1.11 苯酚 0.36 乙醇 0.11 5 氨 0.96 二甲基二硫醚 0.36 氨 0.09 6 丁酮 0.83 氨 0.28 乙酸 0.07 7 庚烷 0.78 2-戊醇 0.27 甲醇 0.05 8 2-戊醇 0.70 双戊烯 0.21 2-戊醇 0.04 9 苯酚 0.69 乙酸乙酯 0.17 双戊烯 0.04 10 甲醇 0.64 α-蒎烯 0.15 α-蒎烯 0.03 表 4 各车间废气排放口OAV排名前10的恶臭物质
Table 4. Top 10 odor substances in the OAV of the exhaust outlets of each workshop
排名 预处理车间 生化车间 深加工车间 恶臭物质 OAV 恶臭物质 OAV 恶臭物质 OAV 1 乙硫醇 28 419 乙硫醇 3 448 乙硫醇 614 2 丁硫醇 5 482 丁硫醇 2 247 丁硫醇 321 3 甲硫醇 4 270 甲硫醇 294 甲硫醇 111 4 乙硫醚 794 乙硫醚 208 乙硫醚 43 5 硫化氢 283 异戊酸 40 苯酚 12 6 异戊酸 170 α-蒎烯 27 异戊酸 10 7 甲硫醚 97 乙醛 24 二甲基二硫醚 6 8 丁酸 56 苯酚 17 α-蒎烯 6 9 乙醛 50 异戊醛 17 乙醛 5 10 三甲胺 34 甲硫醚 12 乙酸 5 -
[1] 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气, 2012, 30(1): 22-26.ZHANG Q F, YANG L H, ZHOU D D. Overview on food waste treatment technology[J]. China Biogas, 2012, 30(1): 22-26. [2] 郝鑫, 苏婧, 孙源媛, 等.餐厨垃圾与污泥、秸秆不同配比联合厌氧发酵对产气性能的影响[J]. 环境科学研究,2020,33(1):235-242.HAO X, SU J, SUN Y Y, et al. Biogas production of anaerobic co-digestion with different ratios of kitchen waste, sewage sludge and rice straw[J]. Research of Environmental Sciences,2020,33(1):235-242. [3] 中国固废网.全国“无废城市”建设试点启动会在深圳召开[EB/OL]. (2019-05-14)[2021-10-01]. https://www.http://solidwaste.com.cn/news/291548.html.. [4] KOMILIS D P, HAM R K, PARK J K. Emission of volatile organic compounds during composting of municipal solid wastes[J]. Water Research,2004,38(7):1707-1714. doi: 10.1016/j.watres.2003.12.039 [5] 胡冠九, 高占啟, 张涛, 等.环境空气中异味物质的监测、评价与溯源[J]. 中国环境监测,2019,35(4):10-19.HU G J, GAO Z Q, ZHANG T, et al. The odor monitoring, evaluation and traceability for the ambient air[J]. Environmental Monitoring in China,2019,35(4):10-19. [6] 郝晓地, 周鹏, 曹达啓.餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报,2017,11(2):673-682. doi: 10.12030/j.cjee.201508159HAO X D, ZHOU P, CAO D Q. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering,2017,11(2):673-682. doi: 10.12030/j.cjee.201508159 [7] 邓俊.餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300DENG J. Harmless treatment and resource utilization of kitchen waste: development status and trend[J]. Journal of Environmental Engineering Technology,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300 [8] CHEN Y C, HSU Y C, WANG C T. Effects of storage environment on the moisture content and microbial growth of food waste[J]. Journal of Environmental Management,2018,214:192-196. [9] 宫亚斌, 陈智远, 姚建刚, 等.200 t/d餐厨垃圾厌氧产沼工程调试与运行分析[J]. 可再生能源,2017,35(10):1443-1447.GONG Y B, CHEN Z Y, YAO J G, et al. Analysis of 200 t/d food waste anaerobic biogas production project[J]. Renewable Energy Resources,2017,35(10):1443-1447. [10] LI Y Y, JIN Y Y, BORRION A, et al. Current status of food waste generation and management in China[J]. Bioresource Technology,2019,273:654-665. doi: 10.1016/j.biortech.2018.10.083 [11] WU T, WANG X M, LI D J, et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Atmospheric Environment,2010,44(39):5065-5071. doi: 10.1016/j.atmosenv.2010.09.019 [12] TAN H B, ZHAO Y, LING Y, et al. Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste[J]. Waste Management,2017,68:677-687. doi: 10.1016/j.wasman.2017.07.015 [13] WU C D, SHU M S, LIU X, et al. Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants[J]. Waste Management,2020,103:314-322. doi: 10.1016/j.wasman.2019.12.043 [14] 张妍, 王元刚, 卢志强, 等.我国餐厨废物生化处理设施恶臭排放特征分析[J]. 环境科学,2015,36(10):3603-3610. doi: 10.13227/j.hjkx.2015.10.008ZHANG Y, WANG Y G, LU Z Q, et al. Odor emission characteristics from biochemical treatment facilities of kitchen waste in China[J]. Environmental Science,2015,36(10):3603-3610. doi: 10.13227/j.hjkx.2015.10.008 [15] MAO I F, TSAI C J, SHEN S H, et al. Critical components of odors in evaluating the performance of food waste composting plants[J]. Science of the Total Environment,2006,370(2/3):323-329. [16] 阮仁俊, 李家乐, 欧坤轩, 等.RSI-MO工艺对沼气脱硫的影响及微生物种群分析[J]. 中国环境科学,2021,41(4):1909-1916. doi: 10.3969/j.issn.1000-6923.2021.04.046RUAN R J, LI J L, OU K X, et al. Influence of RSI-MO process on biogas desulfurization and analysis of microbial communities[J]. China Environmental Science,2021,41(4):1909-1916. doi: 10.3969/j.issn.1000-6923.2021.04.046 [17] 王天舒.选择离子流动管质谱及其在痕量气体分析中的应用[J]. 分析化学,2005,33(6):887-893. doi: 10.3321/j.issn:0253-3820.2005.06.037WANG T S. The selected ion flow tube mass spectrometry and its applications to trace gas analysis[J]. Chinese Journal of Analytical Chemistry,2005,33(6):887-893. doi: 10.3321/j.issn:0253-3820.2005.06.037 [18] VITOLA PASETTO L, SIMON V, RICHARD R, et al. A catalyst-free process for gas ozonation of reduced sulfur compounds[J]. Chemical Engineering Journal,2020,387:123416. doi: 10.1016/j.cej.2019.123416 [19] 王德发, 周枫然, 叶菁, 等.FTIR在气体标准物质研究中的应用[J]. 计量科学与技术,2021,65(5):67-76. doi: 10.12338/j.issn.2096-9015.2020.9041WANG D F, ZHOU F R, YE J, et al. Application of FTIR in the research on gas reference materials[J]. Metrology Science and Technology,2021,65(5):67-76. doi: 10.12338/j.issn.2096-9015.2020.9041 [20] NAGATA Y, TAKEUCHI N. Measurement of odor threshold by triangle odor bag method [EB/OL]. [2021-08-16]. http://www.xuebalib.com/cloud/literature-1t7cxSYpUru8.html. [21] 王亘, 翟增秀, 耿静, 等.40种典型恶臭物质嗅阈值测定[J]. 安全与环境学报,2015,15(6):348-351.WANG G, ZHAI Z X, GENG J, et al. Testing and determination of the olfactory thresholds of the 40 kinds of typical malodorous substances[J]. Journal of Safety and Environment,2015,15(6):348-351. [22] 李伟芳. 异味污染的感官表征与暴露评估方法[M]. 北京: 化学工业出版社, 2020. [23] BRATTOLI M, CISTERNINO E, DAMBRUOSO P R, et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds[J]. Sensors (Basel, Switzerland),2013,13(12):16759-16800. doi: 10.3390/s131216759 [24] HE P J, TANG J F, ZHANG D Q, et al. Release of volatile organic compounds during bio-drying of municipal solid waste[J]. Journal of Environmental Sciences,2010,22(5):752-759. doi: 10.1016/S1001-0742(09)60173-X [25] 李海青, 祁光霞, 刘欣艳, 等.夏季有机生活垃圾堆肥过程恶臭排放特征及健康风险评估[J]. 环境科学研究,2020,33(4):868-875.LI H Q, QI G X, LIU X Y, et al. Emission characteristics and health risk assessment of odorous pollutants from organic fraction of municipal solid waste compost in summer[J]. Research of Environmental Sciences,2020,33(4):868-875. ⊕