留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

餐厨垃圾生化处理机工艺恶臭污染特征研究

呼佳宁 林子吟 费波

呼佳宁,林子吟,费波.餐厨垃圾生化处理机工艺恶臭污染特征研究[J].环境工程技术学报,2023,13(1):340-347 doi: 10.12153/j.issn.1674-991X.20210561
引用本文: 呼佳宁,林子吟,费波.餐厨垃圾生化处理机工艺恶臭污染特征研究[J].环境工程技术学报,2023,13(1):340-347 doi: 10.12153/j.issn.1674-991X.20210561
HU J N,LIN Z Y,FEI B.Study of odor pollution characteristics of bio-chemical processor treatment of kitchen waste[J].Journal of Environmental Engineering Technology,2023,13(1):340-347 doi: 10.12153/j.issn.1674-991X.20210561
Citation: HU J N,LIN Z Y,FEI B.Study of odor pollution characteristics of bio-chemical processor treatment of kitchen waste[J].Journal of Environmental Engineering Technology,2023,13(1):340-347 doi: 10.12153/j.issn.1674-991X.20210561

餐厨垃圾生化处理机工艺恶臭污染特征研究

doi: 10.12153/j.issn.1674-991X.20210561
基金项目: 上海市生态环境局科研项目(沪环科〔2020〕第44号);上海市科委项目(20692115600)
详细信息
    作者简介:

    呼佳宁(1992—),女,工程师,硕士,主要从事大气污染及异味污染研究,jianing_hu@126.com

    通讯作者:

    林子吟(1987—),女,工程师,博士,主要从事大气固定源污染治理研究,linzysaes@163.com

  • 中图分类号: X512

Study of odor pollution characteristics of bio-chemical processor treatment of kitchen waste

  • 摘要:

    以上海某基于餐厨垃圾生化处理机工艺的企业为研究对象,通过筛选餐厨垃圾关键测试物质,测试案例企业各处理工艺有组织排放口、厂区及厂界无组织排放中的挥发性有机物(VOCs)及恶臭物质情况,结合异味活度(OAV)指标评价识别典型恶臭物质,深入分析餐厨垃圾好氧生化处理机企业的恶臭污染特征及关键影响因素。结果表明:VOCs及恶臭物质浓度表现为预处理车间>生化车间>深加工车间,排放成分主要为醇类、羰基类、硫化物和芳香烃等有机物;主要的恶臭物质为乙硫醇、丁硫醇、甲硫醇和乙硫醚等硫化物;废水处理设施是案例企业恶臭产生的潜在主要来源之一,包括废水厌氧罐的沼气泄漏、废水处理设施的无组织臭气逸散等;餐厨垃圾好氧生化处理类型企业对周边的恶臭污染与其生产工序具有显著关系。建议同类型企业可通过减少无组织臭气排放环节、建立沼气泄漏定期检测与应急管理制度、提高末端装置运行效果等方面缓解恶臭污染问题。

     

  • 图  1  垃圾处理工艺流程

    Figure  1.  Flow diagram of the waste treatment process

    图  2  各处理工艺有组织废气排放口VOCs及恶臭物质总浓度和臭气浓度

    Figure  2.  Total mass concentration of VOCs and odorous substances, and odor concentration of each exhaust outlet

    图  3  各处理工艺有组织废气排放口VOCs和其他恶臭物质浓度占比

    Figure  3.  Mass concentration ratio of VOCs and other odor substances of exhaust outlets of each treatment process

    图  4  废水处理厌氧罐顶部红外扫描图

    Figure  4.  Infrared scanning images of the top of the anaerobic tank for wastewater treatment

    图  5  企业厂区内硫化氢浓度分布

    Figure  5.  Distribution map of H2S concentration in the factory area

    图  6  企业厂界各典型恶臭物质浓度变化

    Figure  6.  Volume concentration change of typical malodorous substances at the factory boundary

    表  1  测试方法与仪器

    Table  1.   Testing methods and instruments

    检测
    点位
    采样及
    检测时间
    检测方法仪器型号仪器厂商检测指标样品数量/个测试参数
    废气
    排口
    09:00—17:00SIFT-MS技术SYFT VOICE 200型选择离子流动管质谱分析仪新西兰 Syft
    公司
    VOCs及恶臭物质浓度15在选择离子模式下,以H3O+、NO+、O2 +作为初始离子;扫描时间为60 s;延迟计算时间5 s;样品测定时间90 s;进口温度120 ℃;氮气为载气,载气压力为300 kPa。每个排气筒采集5个平行样,单个样品扫描3次
    厂界环境空气16:00—次日16:00SIFT-MS技术SYFT VOICE 200型选择离子流动管质谱分析仪新西兰 Syft
    公司
    主要恶臭物质浓度242在选择离子模式下,以H3O+、NO+、O2+作为初始离子开展扫描,间隔5 min采样扫描,单个样品扫描1次。实时测试24 h
    废气
    排口
    09:00—17:00三点比较式臭袋法人工嗅辨臭气浓度18采集3个平行样
    厂区环境空气09:00—17:00传感器测试技术OdoTracker TR8加拿大Scentroid公司硫化氢浓度80内置2个传感器,分辨率分别为10−3和1 μmol/mol,每个点位测试5次,选取最大值
    废水处理厌
    氧罐
    共检测3次,分别为09:00、13:00、17:00FTIR技术GF300气体成像型红外热像仪美国FLIR Systems公司红外扫描图15精度为温度范围(0~100 ℃)的±1 ℃或者温度范围读数(>100 ℃)的±2%,对CH4泄漏的检出限为0.8 g/h。每次扫描10 min以上,选取有效扫描截图
    下载: 导出CSV

    表  2  测试物质及嗅阈值[20-21]

    Table  2.   Testing substances and odor thresholds

    测试物质CAS号嗅阈值/(μmol/mol)测试物质CAS号嗅阈值/(μmol/mol)测试物质CAS号嗅阈值/(μmol/mol)
    正丁醇71-36-30.066四氯化碳56-23-5甲醛50-00-00.5
    1-丙醇71-23-80.094氯苯108-90-7甲基异丁酮108-10-1
    2-丁醇78-92-20.22异戊酸503-74-20.000 16戊醛110-62-30.001 6
    巴豆醛4170-30-3乙酸64-19-70.006丙醛123-38-60.016
    2-戊醇6032-29-70.29丙烯酸79-10-7丙酮67-64-1
    乙醇64-17-50.1丁酸107-92-60.001 3庚烷142-82-5
    乙二醇107-21-1正戊酸109-52-40.002 5己烷110-54-3
    甲醇67-56-1丙酸79-09-40.008 7异戊烷78-78-4
    苯乙烯100-42-50.034二甲醚115-10-6正辛烷111-65-9
    71-43-2丁硫醇109-79-50.000 002 81,3-丁二烯106-99-0
    乙苯100-41-40.018二硫化碳75-15-00.171-丁烯106-98-90.36
    异丙苯98-82-80.008 4乙硫醚352-93-20.000 033α-蒎烯80-56-80.001
    91-20-3二甲基二硫醚624-92-00.011柠檬烯138-86-30.016
    苯酚108-95-20.005 6甲硫醚75-18-30.002丙烯115-07-1
    甲苯108-88-30.098乙硫醇75-08-10.000 008 7四氯乙烯127-18-4
    7664-41-70.3硫化氢7783-06-40.001 2乙酸异丙酯108-21-4
    环己胺108-91-8甲硫醇74-93-10.000 067乙酸丁酯123-86-40.007 9
    二乙胺109-89-70.048异戊醛590-86-30.000 3乙酸乙酯141-78-6
    二甲胺124-40-30.033乙醛75-07-00.018乙酸己酯142-92-70.001 8
    一甲胺74-89-50.035丙烯醛107-02-80.003 6乙酸异丁酯110-19-0
    吡啶110-86-1苯甲醛100-52-7丙烯酸甲酯96-33-30.003 5
    三乙胺121-44-8丁醛123-72-80.000 85甲基丙烯酸甲酯80-62-6
    三甲胺75-50-30.000 9丁酮78-93-30.17乙酸丙酯109-60-4
    苄基氯100-44-7环己酮108-94-1
    下载: 导出CSV

    表  3  各车间废气排放口前10污染物浓度

    Table  3.   Mass concentration of top 10 pollutants of exhaust outlets of each workshop

    排名预处理车间生化车间深加工车间
    污染物浓度/
    (mg/m3
    污染物浓度/
    (mg/m3
    污染物浓度/
    (mg/m3
    1乙醇2.52乙醇1.30苯酚0.27
    21-丙醇1.67乙醛0.79二甲基二硫醚0.26
    3乙醛1.62甲醇0.59乙醛0.16
    4丙烯酸1.11苯酚0.36乙醇0.11
    50.96二甲基二硫醚0.360.09
    6丁酮0.830.28乙酸0.07
    7庚烷0.782-戊醇0.27甲醇0.05
    82-戊醇0.70双戊烯0.212-戊醇0.04
    9苯酚0.69乙酸乙酯0.17双戊烯0.04
    10甲醇0.64α-蒎烯0.15α-蒎烯0.03
    下载: 导出CSV

    表  4  各车间废气排放口OAV排名前10的恶臭物质

    Table  4.   Top 10 odor substances in the OAV of the exhaust outlets of each workshop

    排名预处理车间生化车间深加工车间
    恶臭物质OAV恶臭物质OAV恶臭物质OAV
    1乙硫醇28 419乙硫醇3 448乙硫醇614
    2丁硫醇5 482丁硫醇2 247丁硫醇321
    3甲硫醇4 270甲硫醇294甲硫醇111
    4乙硫醚794乙硫醚208乙硫醚43
    5硫化氢283异戊酸40苯酚12
    6异戊酸170α-蒎烯27异戊酸10
    7甲硫醚97乙醛24二甲基二硫醚6
    8丁酸56苯酚17α-蒎烯6
    9乙醛50异戊醛17乙醛5
    10三甲胺34甲硫醚12乙酸5
    下载: 导出CSV
  • [1] 张庆芳, 杨林海, 周丹丹. 餐厨垃圾废弃物处理技术概述[J]. 中国沼气, 2012, 30(1): 22-26.

    ZHANG Q F, YANG L H, ZHOU D D. Overview on food waste treatment technology[J]. China Biogas, 2012, 30(1): 22-26.
    [2] 郝鑫, 苏婧, 孙源媛, 等.餐厨垃圾与污泥、秸秆不同配比联合厌氧发酵对产气性能的影响[J]. 环境科学研究,2020,33(1):235-242.

    HAO X, SU J, SUN Y Y, et al. Biogas production of anaerobic co-digestion with different ratios of kitchen waste, sewage sludge and rice straw[J]. Research of Environmental Sciences,2020,33(1):235-242.
    [3] 中国固废网.全国“无废城市”建设试点启动会在深圳召开[EB/OL]. (2019-05-14)[2021-10-01]. https://www.http://solidwaste.com.cn/news/291548.html..
    [4] KOMILIS D P, HAM R K, PARK J K. Emission of volatile organic compounds during composting of municipal solid wastes[J]. Water Research,2004,38(7):1707-1714. doi: 10.1016/j.watres.2003.12.039
    [5] 胡冠九, 高占啟, 张涛, 等.环境空气中异味物质的监测、评价与溯源[J]. 中国环境监测,2019,35(4):10-19.

    HU G J, GAO Z Q, ZHANG T, et al. The odor monitoring, evaluation and traceability for the ambient air[J]. Environmental Monitoring in China,2019,35(4):10-19.
    [6] 郝晓地, 周鹏, 曹达啓.餐厨垃圾处置方式及其碳排放分析[J]. 环境工程学报,2017,11(2):673-682. doi: 10.12030/j.cjee.201508159

    HAO X D, ZHOU P, CAO D Q. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering,2017,11(2):673-682. doi: 10.12030/j.cjee.201508159
    [7] 邓俊.餐厨垃圾无害化处理与资源化利用现状及发展趋势[J]. 环境工程技术学报,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300

    DENG J. Harmless treatment and resource utilization of kitchen waste: development status and trend[J]. Journal of Environmental Engineering Technology,2019,9(6):637-642. doi: 10.12153/j.issn.1674-991X.2019.05.300
    [8] CHEN Y C, HSU Y C, WANG C T. Effects of storage environment on the moisture content and microbial growth of food waste[J]. Journal of Environmental Management,2018,214:192-196.
    [9] 宫亚斌, 陈智远, 姚建刚, 等.200 t/d餐厨垃圾厌氧产沼工程调试与运行分析[J]. 可再生能源,2017,35(10):1443-1447.

    GONG Y B, CHEN Z Y, YAO J G, et al. Analysis of 200 t/d food waste anaerobic biogas production project[J]. Renewable Energy Resources,2017,35(10):1443-1447.
    [10] LI Y Y, JIN Y Y, BORRION A, et al. Current status of food waste generation and management in China[J]. Bioresource Technology,2019,273:654-665. doi: 10.1016/j.biortech.2018.10.083
    [11] WU T, WANG X M, LI D J, et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Atmospheric Environment,2010,44(39):5065-5071. doi: 10.1016/j.atmosenv.2010.09.019
    [12] TAN H B, ZHAO Y, LING Y, et al. Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste[J]. Waste Management,2017,68:677-687. doi: 10.1016/j.wasman.2017.07.015
    [13] WU C D, SHU M S, LIU X, et al. Characterization of the volatile compounds emitted from municipal solid waste and identification of the key volatile pollutants[J]. Waste Management,2020,103:314-322. doi: 10.1016/j.wasman.2019.12.043
    [14] 张妍, 王元刚, 卢志强, 等.我国餐厨废物生化处理设施恶臭排放特征分析[J]. 环境科学,2015,36(10):3603-3610. doi: 10.13227/j.hjkx.2015.10.008

    ZHANG Y, WANG Y G, LU Z Q, et al. Odor emission characteristics from biochemical treatment facilities of kitchen waste in China[J]. Environmental Science,2015,36(10):3603-3610. doi: 10.13227/j.hjkx.2015.10.008
    [15] MAO I F, TSAI C J, SHEN S H, et al. Critical components of odors in evaluating the performance of food waste composting plants[J]. Science of the Total Environment,2006,370(2/3):323-329.
    [16] 阮仁俊, 李家乐, 欧坤轩, 等.RSI-MO工艺对沼气脱硫的影响及微生物种群分析[J]. 中国环境科学,2021,41(4):1909-1916. doi: 10.3969/j.issn.1000-6923.2021.04.046

    RUAN R J, LI J L, OU K X, et al. Influence of RSI-MO process on biogas desulfurization and analysis of microbial communities[J]. China Environmental Science,2021,41(4):1909-1916. doi: 10.3969/j.issn.1000-6923.2021.04.046
    [17] 王天舒.选择离子流动管质谱及其在痕量气体分析中的应用[J]. 分析化学,2005,33(6):887-893. doi: 10.3321/j.issn:0253-3820.2005.06.037

    WANG T S. The selected ion flow tube mass spectrometry and its applications to trace gas analysis[J]. Chinese Journal of Analytical Chemistry,2005,33(6):887-893. doi: 10.3321/j.issn:0253-3820.2005.06.037
    [18] VITOLA PASETTO L, SIMON V, RICHARD R, et al. A catalyst-free process for gas ozonation of reduced sulfur compounds[J]. Chemical Engineering Journal,2020,387:123416. doi: 10.1016/j.cej.2019.123416
    [19] 王德发, 周枫然, 叶菁, 等.FTIR在气体标准物质研究中的应用[J]. 计量科学与技术,2021,65(5):67-76. doi: 10.12338/j.issn.2096-9015.2020.9041

    WANG D F, ZHOU F R, YE J, et al. Application of FTIR in the research on gas reference materials[J]. Metrology Science and Technology,2021,65(5):67-76. doi: 10.12338/j.issn.2096-9015.2020.9041
    [20] NAGATA Y, TAKEUCHI N. Measurement of odor threshold by triangle odor bag method [EB/OL]. [2021-08-16]. http://www.xuebalib.com/cloud/literature-1t7cxSYpUru8.html.
    [21] 王亘, 翟增秀, 耿静, 等.40种典型恶臭物质嗅阈值测定[J]. 安全与环境学报,2015,15(6):348-351.

    WANG G, ZHAI Z X, GENG J, et al. Testing and determination of the olfactory thresholds of the 40 kinds of typical malodorous substances[J]. Journal of Safety and Environment,2015,15(6):348-351.
    [22] 李伟芳. 异味污染的感官表征与暴露评估方法[M]. 北京: 化学工业出版社, 2020.
    [23] BRATTOLI M, CISTERNINO E, DAMBRUOSO P R, et al. Gas chromatography analysis with olfactometric detection (GC-O) as a useful methodology for chemical characterization of odorous compounds[J]. Sensors (Basel, Switzerland),2013,13(12):16759-16800. doi: 10.3390/s131216759
    [24] HE P J, TANG J F, ZHANG D Q, et al. Release of volatile organic compounds during bio-drying of municipal solid waste[J]. Journal of Environmental Sciences,2010,22(5):752-759. doi: 10.1016/S1001-0742(09)60173-X
    [25] 李海青, 祁光霞, 刘欣艳, 等.夏季有机生活垃圾堆肥过程恶臭排放特征及健康风险评估[J]. 环境科学研究,2020,33(4):868-875.

    LI H Q, QI G X, LIU X Y, et al. Emission characteristics and health risk assessment of odorous pollutants from organic fraction of municipal solid waste compost in summer[J]. Research of Environmental Sciences,2020,33(4):868-875. ⊕
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  169
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-11

目录

    /

    返回文章
    返回