留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国能源消费CO2排放的影响因素及情景分析

张剑 刘景洋 董莉 乔琦

张剑,刘景洋,董莉,等.中国能源消费CO2排放的影响因素及情景分析[J].环境工程技术学报,2023,13(1):71-78 doi: 10.12153/j.issn.1674-991X.20210563
引用本文: 张剑,刘景洋,董莉,等.中国能源消费CO2排放的影响因素及情景分析[J].环境工程技术学报,2023,13(1):71-78 doi: 10.12153/j.issn.1674-991X.20210563
ZHANG J,LIU J Y,DONG L,et al.Influencing factors and scenario analysis of China's CO2 emission of energy consumption[J].Journal of Environmental Engineering Technology,2023,13(1):71-78 doi: 10.12153/j.issn.1674-991X.20210563
Citation: ZHANG J,LIU J Y,DONG L,et al.Influencing factors and scenario analysis of China's CO2 emission of energy consumption[J].Journal of Environmental Engineering Technology,2023,13(1):71-78 doi: 10.12153/j.issn.1674-991X.20210563

中国能源消费CO2排放的影响因素及情景分析

doi: 10.12153/j.issn.1674-991X.20210563
基金项目: 国家重点研发计划项目(2018YFC1903601)
详细信息
    作者简介:

    张剑(1997—),男,硕士研究生,主要从事低碳发展与循环经济研究,16013326@sdtbu.edu.cn

    通讯作者:

    刘景洋(1974—),男,研究员,博士,主要从事循环经济及碳排放研究,liujy@craes.org.cn

    乔琦(1963—),女,研究员,博士,主要从事产业生态学、清洁生产与循环经济研究,qiaoqi@craes.org.cn

  • 中图分类号: X24,X196

Influencing factors and scenario analysis of China's CO2 emission of energy consumption

  • 摘要:

    针对我国2030年碳达峰要求,立足当前经济和能源需求快速发展的现状,选取2000—2020年时间序列数据,采用Tapio脱钩模型,定量分析中国能源消费CO2排放量与经济增长的脱钩状况;建立扩展的STIRPAT模型,探讨中国能源消费CO2排放的影响因素;运用情景分析法对基准情景(S0)、产业结构优化情景(S1)、能源结构优化情景(S2)、多要素优化情景(S3)4种情景下的CO2排放量进行了预测。结果表明:中国能源消费CO2排放量与经济增长之间的脱钩状态总体以弱脱钩为主。人口规模、能源消费结构、第二产业占比、城镇化率、人均GDP、第三产业占比、碳排放强度每变动1%时,分别引起能源消费CO2排放量的2.857%、0.879%、0.836%、0.623%、(0.221+0.011ln A1)%、0.241%、0.132%的变动。基准情景下中国在2030年之前不能实现碳达峰,产业结构优化情景和能源结构优化情景下在2030年实现碳达峰,峰值分别为110.90亿和109.18亿t,多要素优化情景下可以在2030年之前实现碳达峰,峰值为105.03亿t。

     

  • 图  1  2000—2020年中国能源消费量和能源消费所产生的CO2排放量变化

    Figure  1.  Changes in China's energy consumption and CO2 emission of energy consumption from 2000 to 2020

    图  2  不同情景下2021—2060年中国能源消费CO2排放量

    Figure  2.  CO2 emissions from China's energy consumption under different scenarios in 2021-2060

    表  1  模型中各变量情况说明

    Table  1.   Description of each variable in the model

    项目定义单位
    CO2排放量(I能源消费所产生的CO2
    排放总量
    亿t
    人口要素(P人口规模(P1年末总人口万人
    城镇化率(P2)城镇人口占总人口的比例%
    富裕度要素(A人均GDP(A1GDP与年末
    总人口的比值
    元/人
    第二产业占比(A2第二产业增加值占GDP的比例%
    第三产业占比(A3第三产业增加值占GDP 的比例%
    技术要素(T碳排放强度(T1单位GDP产生的CO2排放量t/万元
    能源消费结构(T2煤炭消费量占能源消费
    总量的比例
    %
    下载: 导出CSV

    表  2  2000—2020年中国能源消费CO2排放量与经济增长的脱钩关系

    Table  2.   Decoupling relationship between CO2 emission of China's energy consumption and economic growth from 2000 to 2020

    年份(It−It−1) /It−1 (GDPt−GDPt1) /
    GDPt−1
    e脱钩关系
    2000—20010.0460.0830.554弱脱钩
    2001—20020.0940.0911.027增长连结
    2002—20030.1760.1001.750扩张型负脱钩
    2003—20040.1660.1011.645扩张型负脱钩
    2004—20050.1430.1141.256扩张型负脱钩
    2005—20060.0950.1270.749弱脱钩
    2006—20070.0860.1420.603弱脱钩
    2007—20080.0180.0970.184弱脱钩
    2008—20090.0470.0940.505弱脱钩
    2009—20100.0570.1060.532弱脱钩
    2010—20110.0840.0960.884增长连结
    2011—20120.0220.0790.277弱脱钩
    2012—20130.0280.0780.359弱脱钩
    2013—20140.0120.0740.160弱脱钩
    2014—20150.0010.0700.013强脱钩
    2015—20160.0020.0680.032弱脱钩
    2016—20170.0200.0690.288弱脱钩
    2017—20180.0200.0680.294弱脱钩
    2018—20190.0200.0590.336弱脱钩
    2019—20200.0120.0230.502弱脱钩
    2000—20201.9824.2820.463弱脱钩
    下载: 导出CSV

    表  3  岭回归估计结果

    Table  3.   Estimated results by Ridge regression

    变量系数标准误差标准系数t统计值
    常数−43.0012.1520.000−19.979
    ln P12.8570.1440.27619.873
    ln P20.6230.0270.30722.815
    ln A10.2210.0090.31424.690
    (ln A1)20.0110.0000.30124.124
    ln A20.8360.1350.1736.213
    ln A30.2410.0720.0713.328
    ln T10.1320.0470.0842.776
    ln T20.8790.1370.1906.421
    R20.990
    F155.399
    Sig F0.000
    下载: 导出CSV

    表  4  模型中各要素的情景参数设定

    Table  4.   Scenario parameter setting of factors affecting CO2 emission in the model % 

    要素变化率2021—
    2030年
    2031—
    2040年
    2041—
    2050年
    2051—
    2060年
    人口规模0.300.00−0.10−0.15
    城镇化率1.200.800.500.20
    人均GDP7.005.003.002.00
    第二产业占比−2.50−2.00−1.50−1.00
    −3.00−2.50−2.00−1.50
    第三产业占比2.001.000.500.20
    2.001.200.600.50
    碳排放强度−2.50−2.00−1.50−1.00
    −3.50−2.50−2.00−1.50
    能源消费结构−2.00−1.00−0.60−0.40
    −2.50−1.80−1.30−1.00
    下载: 导出CSV
  • [1] SHI B B, WU L, KANG R. Clean development, energy substitution, and carbon emissions: evidence from clean development mechanism (CDM) project implementation in China[J]. Sustainability,2021,13(2):860. doi: 10.3390/su13020860
    [2] IPCC. AR5 synthesis report: climate change 2014[EB/OL]. [2021-10-08]. https://www.ipcc.ch/report/ar5/syr/.
    [3] BP公司. BP世界能源统计年鉴[R]. 北京: BP公司, 2020.
    [4] 全球实时碳数据[EB/OL]. [2021-10-08]. http://carbonmonitor.org.cn/.
    [5] PATA U K. Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with a structural break[J]. Environmental Science and Pollution Research,2021,28(1):846-861. doi: 10.1007/s11356-020-10446-3
    [6] YAO S J, ZHANG S, ZHANG X M. Renewable energy, carbon emission and economic growth: a revised environmental Kuznets Curve perspective[J]. Journal of Cleaner Production,2019,235:1338-1352.
    [7] SUN Y, LI M X, ZHANG M J, et al. A study on China's economic growth, green energy technology, and carbon emissions based on the Kuznets curve (EKC)[J]. Environmental Science and Pollution Research International,2021,28(6):7200-7211. doi: 10.1007/s11356-020-11019-0
    [8] 宋晓晖, 张裕芬, 汪艺梅, 等.基于IPAT扩展模型分析人口因素对碳排放的影响[J]. 环境科学研究,2012,25(1):109-115.

    SONG X H, ZHANG Y F, WANG Y M, et al. Analysis of impacts of demographic factors on carbon emissions based on the IPAT model[J]. Research of Environmental Sciences,2012,25(1):109-115.
    [9] WANG C J, WANG F, ZHANG X L, et al. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang[J]. Renewable and Sustainable Energy Reviews,2017,67:51-61. doi: 10.1016/j.rser.2016.09.006
    [10] SHAN X, SHAO H W. The scenario analysis of carbon emissions based on improved IPAT model in China[J]. Advanced Materials Research,2012,616/617/618:1484-1489.
    [11] 黄蕊, 王铮, 丁冠群, 等.基于STIRPAT模型的江苏省能源消费碳排放影响因素分析及趋势预测[J]. 地理研究,2016,35(4):781-789.

    HUANG R, WANG Z, DING G Q, et al. Trend prediction and analysis of influencing factors of carbon emissions from energy consumption in Jiangsu Province based on STIRPAT model[J]. Geographical Research,2016,35(4):781-789.
    [12] NOSHEEN M, ABBASI M A, IQBAL J. Analyzing extended STIRPAT model of urbanization and CO2 emissions in Asian countries[J]. Environmental Science and Pollution Research International,2020,27(36):45911-45924. doi: 10.1007/s11356-020-10276-3
    [13] XIONG C H, CHEN S, XU L T. Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China[J]. Growth and Change,2020,51(3):1401-1416. doi: 10.1111/grow.12384
    [14] ZHANG Y L, ZHANG Q Y, PAN B B. Impact of affluence and fossil energy on China carbon emissions using STIRPAT model[J]. Environmental Science and Pollution Research,2019,26(18):18814-18824. doi: 10.1007/s11356-019-04950-4
    [15] LIU S X, PENG B, LIU Q, et al. Economic-related CO2 emissions analysis of Ordos Basin based on a refined STIRPAT model[J]. Greenhouse Gases: Science and Technology,2019,9(5):1064-1080. doi: 10.1002/ghg.1920
    [16] ZHANG S C, ZHAO T. Identifying major influencing factors of CO2 emissions in China: regional disparities analysis based on STIRPAT model from 1996 to 2015[J]. Atmospheric Environment,2019,207:136-147.
    [17] YANG P G, LIANG X A, DROHAN P J. Using Kaya and LMDI models to analyze carbon emissions from the energy consumption in China[J]. Environmental Science and Pollution Research International,2020,27(21):26495-26501. doi: 10.1007/s11356-020-09075-7
    [18] WANG W W, ZHANG M, ZHOU M. Using LMDI method to analyze transport sector CO2 emissions in China[J]. Energy,2011,36(10):5909-5915.
    [19] LIU L C, FAN Y, WU G, et al. Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: an empirical analysis[J]. Energy Policy,2007,35(11):5892-5900.
    [20] YIN L B, LIU G C, ZHOU J L, et al. A calculation method for CO2 emission in utility boilers based on BP neural network and carbon balance[J]. Energy Procedia,2017,105:3173-3178. doi: 10.1016/j.egypro.2017.03.690
    [21] WEN L, LIU Y J. A research about Beijing's carbon emissions based on the IPSO-BP model[J]. Environmental Progress & Sustainable Energy,2017,36(2):428-434.
    [22] DAI S Y, NIU D X, HAN Y R. Forecasting of energy-related CO2 emissions in China based on GM(1, 1) and least squares support vector machine optimized by modified shuffled frog leaping algorithm for sustainability[J]. Sustainability,2018,10(4):958. doi: 10.3390/su10040958
    [23] HUANG D, HAN M, JIANG Y T. Research on freight transportation carbon emission reduction based on system dynamics[J]. Applied Sciences,2021,11(5):2041. doi: 10.3390/app11052041
    [24] LIU D N, XIAO B W. Can China achieve its carbon emission peaking: a scenario analysis based on STIRPAT and system dynamics model[J]. Ecological Indicators,2018,93:647-657. doi: 10.1016/j.ecolind.2018.05.049
    [25] 孔佑花, 王丽, 郭志玲, 等.基于系统动力学的甘肃省碳排放峰值预测[J]. 环境工程技术学报,2018,8(3):309-318.

    KONG Y H, WANG L, GUO Z L, et al. Carbon emissions peak prediction in Gansu Province based on system dynamics[J]. Journal of Environmental Engineering Technology,2018,8(3):309-318.
    [26] DUAN H Y, ZHANG S P, DUAN S Y, et al. Carbon emissions peak prediction and the reduction pathway in buildings during operation in Jilin Province based on LEAP[J]. Sustainability,2019,11(17):4540.
    [27] MA Z, WANG Y X, DUAN H Y, et al. Study on the passenger transportation energy demand and carbon emission of Jilin Province based on LEAP model[J]. Advanced Materials Research, 2012, 518/519/520/521/522/523: 2243-2246.
    [28] 王永刚, 王旭, 孙长虹, 等.IPAT及其扩展模型的应用研究进展[J]. 应用生态学报,2015,26(3):949-957.

    WANG Y G, WANG X, SUN C H, et al. Research progress on the application of IPAT model and its variants[J]. Chinese Journal of Applied Ecology,2015,26(3):949-957.
    [29] 中国可持续发展能源暨碳排放情景分析[R]. 北京: 国家发展和改革委员会能源研究所, 2003.
    [30] 张型芳, 罗宏, 吕连宏.碳排放与经济增长的协调性分析[J]. 环境工程技术学报,2017,7(4):517-524. doi: 10.3969/j.issn.1674-991X.2017.04.071

    ZHANG X F, LUO H, LÜ L H. Coordination analysis on carbon emission and economic growth[J]. Journal of Environmental Engineering Technology,2017,7(4):517-524. doi: 10.3969/j.issn.1674-991X.2017.04.071
    [31] TAPIO P. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy,2005,12(2):137-151. doi: 10.1016/j.tranpol.2005.01.001
    [32] EHRLICH P R, HOLDREN J P. Impact of population growth[J]. Science,1971,171:1212-1217. doi: 10.1126/science.171.3977.1212
    [33] DIETZ T, ROSA E A. Effects of population and affluence on CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(1):175-179. doi: 10.1073/pnas.94.1.175
    [34] YORK R, ROSA E A, DIETZ T. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts[J]. Ecological Economics,2003,46(3):351-365.
    [35] 国家统计局. 国家数据[EB/OL]. [2021-08-21]. https://data.stats.gov.cn/.
    [36] 杨子晖.经济增长、能源消费与二氧化碳排放的动态关系研究[J]. 世界经济,2011,34(6):100-125.
    [37] 彭希哲, 朱勤.我国人口态势与消费模式对碳排放的影响分析[J]. 人口研究,2010,34(1):48-58.

    PENG X Z, ZHU Q. Impacts of population dynamics and consumption pattern on carbon emission in China[J]. Population Research,2010,34(1):48-58.
    [38] 黄蕊, 王铮.基于STIRPAT模型的重庆市能源消费碳排放影响因素研究[J]. 环境科学学报,2013,33(2):602-608.

    HUANG R, WANG Z. Influencing factors of carbon emissions from energy consumptions in Chongqing based on STIRPAT model[J]. Acta Scientiae Circumstantiae,2013,33(2):602-608.
    [39] 李宁, 白璐, 乔琦, 等.天山北坡经济带经济发展与污染减排潜力以及工业绿色发展策略[J]. 环境科学研究,2020,33(2):503-510.

    LI N, BAI L, QIAO Q, et al. Economic development, emission reduction potential, and strategy analysis of industrial green developmentin northern Tianshan Mountain economic zone[J]. Research of Environmental Sciences,2020,33(2):503-510.
    [40] 张兵兵, 徐康宁, 陈庭强.技术进步对二氧化碳排放强度的影响研究[J]. 资源科学,2014,36(3):567-576.

    ZHANG B B, XU K N, CHEN T Q. The influence of technical progress on carbon dioxide emission intensity[J]. Resources Science,2014,36(3):567-576.
    [41] 赵雲泰, 黄贤金, 钟太洋, 等.1999—2007年中国能源消费碳排放强度空间演变特征[J]. 环境科学,2011,32(11):3145-3152.

    ZHAO Y T, HUANG X J, ZHONG T Y, et al. Spatial pattern evolution of carbon emission intensity from energy consumption in China[J]. Environmental Science,2011,32(11):3145-3152.
    [42] LI Z, LI Y B, SHAO S S. Analysis of influencing factors and trend forecast of carbon emission from energy consumption in China based on expanded STIRPAT model[J]. Energies,2019,12(16):3054. doi: 10.3390/en12163054
    [43] 马晓钰, 李强谊, 郭莹莹.我国人口因素对二氧化碳排放的影响: 基于STIRPAT模型的分析[J]. 人口与经济,2013(1):44-51.

    MA X Y, LI Q Y, GUO Y Y. The impact of population on carbon dioxide emissions in China: an analysis based on STIRPAT model[J]. Population & Economics,2013(1):44-51.
    [44] 朱勤, 彭希哲, 陆志明, 等.人口与消费对碳排放影响的分析模型与实证[J]. 中国人口·资源与环境,2010,20(2):98-102. doi: 10.3969/j.issn.1002-2104.2010.02.017

    ZHU Q, PENG X Z, LU Z M, et al. Analysis model and empirical study of impacts from population and consumption on carbon emissions[J]. China Population Resources and Environment,2010,20(2):98-102. □ doi: 10.3969/j.issn.1002-2104.2010.02.017
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  751
  • HTML全文浏览量:  241
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09

目录

    /

    返回文章
    返回