留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓释碳源填充管式生物反应装置强化脱氮性能及其微生物分布特征

崔贺

崔贺.缓释碳源填充管式生物反应装置强化脱氮性能及其微生物分布特征[J].环境工程技术学报,2022,12(4):1194-1202 doi: 10.12153/j.issn.1674-991X.20210589
引用本文: 崔贺.缓释碳源填充管式生物反应装置强化脱氮性能及其微生物分布特征[J].环境工程技术学报,2022,12(4):1194-1202 doi: 10.12153/j.issn.1674-991X.20210589
CUI H.Enhanced denitrification performance and microbial distribution characteristics of Tubular Bio-reactor Device filled with slow-release carbon source[J].Journal of Environmental Engineering Technology,2022,12(4):1194-1202 doi: 10.12153/j.issn.1674-991X.20210589
Citation: CUI H.Enhanced denitrification performance and microbial distribution characteristics of Tubular Bio-reactor Device filled with slow-release carbon source[J].Journal of Environmental Engineering Technology,2022,12(4):1194-1202 doi: 10.12153/j.issn.1674-991X.20210589

缓释碳源填充管式生物反应装置强化脱氮性能及其微生物分布特征

doi: 10.12153/j.issn.1674-991X.20210589
基金项目: 上海市“科技创新行动计划”项目(21DZ1209803);上海市青年科技启明星计划项目(20QB1404800)
详细信息
    作者简介:

    崔贺(1990—),男, 工程师,博士,主要从事排水工程设计与工艺优化研究,cuihe@smedi.com

  • 中图分类号: X703

Enhanced denitrification performance and microbial distribution characteristics of Tubular Bio-reactor Device filled with slow-release carbon source

  • 摘要:

    为研究缓释碳源填充管式生物反应装置(TBD)对不同氮组分生活污水的脱氮性能及机理,考察中试规模的TBD在3种不同溶解氧(DO)、氨氮(NH4 +-N)及硝氮(NO3 -N)浓度工况下的实际运行效果,同时监测TBD沿程的DO浓度、碳氮比(C/N)、碳源等环境因子变化情况,并在运行期末对TBD的管内基质进行16S rRNA多样性高通量测序。结果表明:3种工况条件下TBD对污水中NH4 +-N、NO3 -N和总氮(TN)的去除率均达90%以上,TBD具有良好的脱氮性能;缓释碳源有助于TBD沿程C/N的增加,且TBD出水CODCr始终低于GB 3838—2002《地表水环境质量标准》Ⅴ类水质标准限值,表明TBD在强化脱氮的同时不会产生有机质过量排放问题。此外,TBD中DO浓度沿程递减,形成了好氧-缺氧沿程分布的特征,且该特征促进了好氧反硝化-缺氧反硝化菌属在TBD的沿程分布。

     

  • 图  1  TBD中试装置照片

    Figure  1.  Photo of pilot-scale TBD

    图  2  TBD中试装置构造

    1—射流曝气机/水泵;2—导流管;3—集水槽;4—配水管;5—TBD;6—浮体;7—植物;8—水面;9—池底

    Figure  2.  Structure of pilot-scale TBD

    图  3  TBD中试装置在3种工况下对NH4 +-N、NO3 -N和TN的去除性能

    Figure  3.  Removal efficiency of NH4 +-N, NO3 -N and TN in pilot-scale TBD with three operating conditions

    图  4  TBD沿程氮浓度分布

    Figure  4.  Variation of nitrogen concentrations along the TBD

    图  5  3种工况下TBD沿程DO浓度、C/N及运行期间CODCr变化

    Figure  5.  Variation of DO and C/N ratio along the TBD as well as CODCr during the operation period under three operating conditions

    图  6  TBD生物膜样品在门水平及属水平的丰度占比

    注:剔除了丰度小于1.0%的细菌门。

    Figure  6.  Abundance of biofilm samples of the TBD at the phylum and genus level

    表  1  TBD中试装置不同工况下的供试水质及运行条件

    Table  1.   Water quality and operation conditions of pilot-scale TBD in different operating modes

    工况运行
    时段
    初始NH4 +-N浓度/
    (mg/L)
    初始NO3 -N浓度/
    (mg/L)
    初始TN浓度/
    (mg/L)
    进水DO浓度/
    (mg/L)
    供水方式
    工况12016-08—2017-018.8 ± 0.89.6 ± 0.920.0 ± 1.76.0 ± 1.0射流曝气机供水,
    50%功率运转
    工况22017-02—2017-071.6 ± 0.312.1 ± 1.015.0 ± 1.33.0 ± 1.0水泵供水,
    满功率运转
    工况32017-08—2018-0112.0 ± 1.26.6 ± 0.720.0 ± 1.99.0 ± 1.0射流曝气机供水,
    满功率运转
    下载: 导出CSV

    表  2  TBD生物膜样品的微生物丰度占比和多样性指数

    Table  2.   Microbial richness and diversity index of the biofilm samples from the TBD

    样品编号高质量序列数覆盖率/%OTUsChao1指数ACE指数Simpson指数Shannon多样性指数
    Z173 15197.75 70126 21743 2170.0365.37
    Z280 20695.36 31232 21752 8050.0216.12
    下载: 导出CSV

    表  3  TBD生物膜样品中的脱氮相关菌属的丰度占比

    Table  3.   Abundance of nitrogen removal functional genera in the biofilm samples from the TBD % 

    菌属类别菌属名Z1Z2
    好氧反硝化相关菌属Citrobacter13.40.5
    Acinetobacter11.10.7
    Rhizobium9.20.5
    Pseudomonas5.50.3
    Bacillus0.90.2
    Achromobacter0.30.0
    Enterobacter0.10.0
    合计40.52.2
    缺氧反硝化相关菌属Thermomonas0.679.35
    Steroidobacter0.155.15
    Hyphomicrobium0.762.37
    Flavobacterium0.10.7
    Azospira0.10.6
    Dechloromonas0.10.4
    Hyphomicrobium0.10.4
    合计2.019.0
    下载: 导出CSV
  • [1] 王丽君, 夏训峰, 朱建超, 等.农村生活污水处理设施水污染物排放标准制订探讨[J]. 环境科学研究,2019,32(6):921-928.

    WANG L J, XIA X F, ZHU J C, et al. Discussion on the drafting of water pollutants discharge standard for rural domestic sewage treatment facilities[J]. Research of Environmental Sciences,2019,32(6):921-928.
    [2] 王幸智, 年跃刚, 张宪奇, 等.曝气生物净化塘处理农村生活污水效果: 以豫南地区商城县为例[J]. 环境工程技术学报,2021,11(3):484-492. doi: 10.12153/j.issn.1674-991X.20210042

    WANG X Z, NIAN Y G, ZHANG X Q, et al. Treatment effect of rural domestic sewage by aerated biological purification pond: taking Shangcheng County in southern Henan Province as an example[J]. Journal of Environmental Engineering Technology,2021,11(3):484-492. doi: 10.12153/j.issn.1674-991X.20210042
    [3] 张曼雪, 邓玉, 倪福全.农村生活污水处理技术研究进展[J]. 水处理技术,2017,43(6):5-10.

    ZHANG M X, DENG Y, NI F Q. Research progress of rural domestic sewage treatment technology[J]. Technology of Water Treatment,2017,43(6):5-10.
    [4] 刘晓慧.我国农村生活污水排放现状初析[J]. 安徽农业科学,2015,43(23):234-235. doi: 10.3969/j.issn.0517-6611.2015.23.086

    LIU X H. Analysis on emission status of rural domestic sewage in China[J]. Journal of Anhui Agricultural Sciences,2015,43(23):234-235. doi: 10.3969/j.issn.0517-6611.2015.23.086
    [5] 庞燕, 项颂, 储昭升, 等.洱海流域城镇化对农村生活污水排放量的影响[J]. 环境科学研究,2015,28(8):1246-1252.

    PANG Y, XIANG S, CHU Z S, et al. Impacts of urbanization on rural domestic sewage emissions in Erhai Lake Basin[J]. Research of Environmental Sciences,2015,28(8):1246-1252.
    [6] 吴红斌, 张斌, 林晓霖.山林地表慢渗系统处理农村生活污水厂尾水研究[J]. 环境保护科学,2017,43(5):51-56.

    WU H B, ZHANG B, LIN X L. Study of the treatment of tail water from rural domestic wastewater treatment plants by forest surface infiltration system[J]. Environmental Protection Science,2017,43(5):51-56.
    [7] 张悦. 江苏省农村生活污水处理设施运行及尾水稻田利用的安全性研究[D]. 南京: 南京农业大学, 2013.
    [8] 王俊能, 赵学涛, 蔡楠, 等.我国农村生活污水污染排放及环境治理效率[J]. 环境科学研究,2020,33(12):2665-2674.

    WANG J N, ZHAO X T, CAI N, et al. Pollution discharge and environmental treatment efficiency of rural domestic sewage in China[J]. Research of Environmental Sciences,2020,33(12):2665-2674.
    [9] 马鲁铭, 王云龙, 刘志刚, 等.南方农村生活污水处理目标及工艺模式探讨[J]. 中国环境科学,2013,33(1):118-122. doi: 10.3969/j.issn.1000-6923.2013.01.017

    MA L M, WANG Y L, LIU Z G, et al. Discussion on objective of rural domestic wastewater treatment and technology system in Southern China[J]. China Environmental Science,2013,33(1):118-122. doi: 10.3969/j.issn.1000-6923.2013.01.017
    [10] 徐志荣, 叶红玉, 卓明, 等.浙江省农村生活污水处理现状及其对策[J]. 生态与农村环境学报,2015,31(4):473-477. doi: 10.11934/j.issn.1673-4831.2015.04.005

    XU Z R, YE H Y, ZHUO M, et al. Status quo and strategies of rural sewage treatment in Zhejiang Province[J]. Journal of Ecology and Rural Environment,2015,31(4):473-477. doi: 10.11934/j.issn.1673-4831.2015.04.005
    [11] 吕锡武.可持续发展的农村生活污水生物生态组合治理技术[J]. 给水排水,2018,54(12):1-5. doi: 10.3969/j.issn.1002-8471.2018.12.002
    [12] 刘君, 邱敬贤, 邓刚.农村生活污水处理技术探讨[J]. 中国环保产业,2018(10):48-51. doi: 10.3969/j.issn.1006-5377.2018.10.010

    LIU J, QIU J X, DENG G. Application of domestic sewage treatment technology in rural areas[J]. China Environmental Protection Industry,2018(10):48-51. doi: 10.3969/j.issn.1006-5377.2018.10.010
    [13] 高立洪, 蒋滔, 杨小玲, 等.农村生活污水常见处理技术及设备现状分析[J]. 农业技术与装备,2017(9):81-85. doi: 10.3969/j.issn.1673-887X.2017.09.039

    GAO L H, JIANG T, YANG X L, et al. Analysis of common treatment technology and equipment for rural domestic sewage[J]. Agricultural Technology & Equipment,2017(9):81-85. doi: 10.3969/j.issn.1673-887X.2017.09.039
    [14] 贾小宁, 何小娟, 韩凯旋, 等.农村生活污水处理技术研究进展[J]. 水处理技术,2018,44(9):22-26.

    JIA X N, HE X J, HAN K X, et al. Research progress of sewage treatment technology in rural areas[J]. Technology of Water Treatment,2018,44(9):22-26.
    [15] 凌宇, 赵远哲, 王海燕, 等.HRT对A/O-BF处理低碳氮比农村生活污水脱氮的影响[J]. 环境科学研究,2021,34(4):927-935.

    LING Y, ZHAO Y Z, WANG H Y, et al. Effects of HRT on A/O-BF nitrogen removal of low C/N rural domestic sewage[J]. Research of Environmental Sciences,2021,34(4):927-935.
    [16] 陈翰, 马放, 李昂, 等.低温条件下污水生物脱氮处理研究进展[J]. 中国给水排水,2016,32(8):37-43.

    CHEN H, MA F, LI A, et al. Research progress in biological nitrogen removal from wastewater under low temperature condition[J]. China Water & Wastewater,2016,32(8):37-43.
    [17] 王建华, 陈永志, 彭永臻.低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J]. 中国环境科学,2010,30(9):1195-1200.

    WANG J H, CHEN Y Z, PENG Y Z. Biological nutrients removal from domestic wastewater with low carbon-to-nitrogen ratio in A2O-BAF system at low temperature[J]. China Environmental Science,2010,30(9):1195-1200.
    [18] 胡述浩. 管式反应器反应失控的CFD技术分析[D]. 沈阳: 东北大学, 2008.
    [19] 赵宇. 蛇形回路热管在化学反应器中的传热性能研究[D]. 南京: 南京工业大学, 2004.
    [20] 张海涛, 丁百全.返混:重要的化学工程概念[J]. 化学工程师,2000,14(3):24-25. doi: 10.3969/j.issn.1002-1124.2000.03.010
    [21] 顾平道, 庄琛, 李英娜.热管化学反应器的应用研究进展[J]. 化学工程师,2004,18(6):37-39. doi: 10.3969/j.issn.1002-1124.2004.06.018

    GU P D, ZHUANG C, LI Y N. Development of heat pipe type chemical reactor[J]. Chemical Engineer,2004,18(6):37-39. doi: 10.3969/j.issn.1002-1124.2004.06.018
    [22] 温瑞媛, 严世强. 化学工程基础[M]. 北京: 北京大学出版社, 2002.
    [23] 黄民生, 崔贺, 常越亚, 等. 一种管式生物净水装置及其净水方法: CN104973689B[P]. 2017-04-19.
    [24] LI D, CHU Z S, ZENG Z Z, et al. Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands[J]. Science of the Total Environment,2021,797:148989. doi: 10.1016/j.scitotenv.2021.148989
    [25] LI D, YE B B, HOU Z Y, et al. Long-term performance and microbial distribution of a filed-scale storing multi-pond constructed wetland with Ottelia acuminata for the treatment of non-point source pollution[J]. Journal of Cleaner Production,2020,262:121367. doi: 10.1016/j.jclepro.2020.121367
    [26] LI D, ZHENG B H, LIU Y, et al. Use of multiple water surface flow constructed wetlands for non-point source water pollution control[J]. Applied Microbiology and Biotechnology,2018,102(13):5355-5368. doi: 10.1007/s00253-018-9011-8
    [27] HUANG X, DONG W Y, WANG H J, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater[J]. Bioresource Technology,2017,241:969-978. doi: 10.1016/j.biortech.2017.05.161
    [28] 李怀正, 姚淑君, 徐祖信, 等.曝气稳定塘处理农村生活污水曝气控制条件研究[J]. 环境科学,2012,33(10):3484-3488.

    LI H Z, YAO S J, XU Z X, et al. Research of controlling condition for aeration stabilization pond dealing with sanitary waste of countryside[J]. Environmental Science,2012,33(10):3484-3488.
    [29] ZHI W, JI G D. Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research,2014,64:32-41. doi: 10.1016/j.watres.2014.06.035
    [30] SOBIESZUK P, SZEWCZYK K W. Estimation of (C/N) ratio for microbial denitrification[J]. Environmental Technology,2006,27(1):103-108. doi: 10.1080/09593332708618624
    [31] YU G L, PENG H Y, FU Y J, et al. Enhanced nitrogen removal of low C/N wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria[J]. Bioresource Technology,2019,280:337-344. doi: 10.1016/j.biortech.2019.02.043
    [32] SHENG S X, LIU B, HOU X Y, et al. Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process[J]. International Biodeterioration & Biodegradation,2018,127:26-34.
    [33] LE T, PENG B, SU C Y, et al. Impact of carbon source and COD/N on the concurrent operation of partial denitrification and anammox[J]. Water Environment Research,2019,91(3):185-197. doi: 10.1002/wer.1016
    [34] KIM E, SHIN S G, JANNAT M, et al. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: a full-scale study[J]. Bioresource Technology,2017,245:1016-1021. doi: 10.1016/j.biortech.2017.08.168
    [35] HUANG X, DONG W Y, WANG H J, et al. Role of acid/alkali-treatment in primary sludge anaerobic fermentation: insights into microbial community structure, functional shifts and metabolic output by high-throughput sequencing[J]. Bioresource Technology,2018,249:943-952. doi: 10.1016/j.biortech.2017.10.104
    [36] XING W, WANG Y, HAO T Y, et al. pH control and microbial community analysis with HCl or CO2 addition in H2-based autotrophic denitrification[J]. Water Research,2020,168:115200. doi: 10.1016/j.watres.2019.115200
    [37] CHEN D Y, GU X S, ZHU W Y, et al. Denitrification- and anammox-dominant simultaneous nitrification, anammox and denitrification (SNAD) process in subsurface flow constructed wetlands[J]. Bioresource Technology,2019,271:298-305. doi: 10.1016/j.biortech.2018.09.123
    [38] DENNEHY C, LAWLOR P G, GARDINER G E, et al. Process stability and microbial community composition in pig manure and food waste anaerobic co-digesters operated at low HRTs[J]. Frontiers of Environmental Science & Engineering,2017,11(3):1-13.
    [39] ZHANG P, GUO J S, SHEN Y, et al. Microbial communities, extracellular proteomics and polysaccharides: a comparative investigation on biofilm and suspended sludge[J]. Bioresource Technology,2015,190:21-28. doi: 10.1016/j.biortech.2015.04.058
    [40] WANG L M, GUO F H, ZHENG Z, et al. Enhancement of rural domestic sewage treatment performance, and assessment of microbial community diversity and structure using tower vermifiltration[J]. Bioresource Technology,2011,102(20):9462-9470. doi: 10.1016/j.biortech.2011.07.085
    [41] HUANG X, ZHU J, DUAN W Y, et al. Biological nitrogen removal and metabolic characteristics in a full-scale two-staged anoxic-oxic (A/O) system to treat optoelectronic wastewater[J]. Bioresource Technology,2020,300:122595. doi: 10.1016/j.biortech.2019.122595
    [42] WANG J L, GONG B Z, HUANG W, et al. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing[J]. Bioresource Technology,2017,228:31-38. doi: 10.1016/j.biortech.2016.12.071
    [43] SUN L, ZHAO X X, ZHANG H F, et al. Biological characteristics of a denitrifying phosphorus-accumulating bacterium[J]. Ecological Engineering,2015,81:82-88. doi: 10.1016/j.ecoleng.2015.04.030
    [44] SLIEKERS A O, DERWORT N, GOMEZ J L C, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research,2002,36(10):2475-2482. doi: 10.1016/S0043-1354(01)00476-6
    [45] DC RUBIN S S, MARÍN I, GÓMEZ M J, et al. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat[J]. Environmental Microbiology,2017,19(9):3745-3754. doi: 10.1111/1462-2920.13876
    [46] TIAN M, ZHAO F Q, SHEN X, et al. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing[J]. Journal of Environmental Sciences,2015,35:181-190. doi: 10.1016/j.jes.2014.12.027
    [47] 酒卫敬, 汪苹, 岳建伟.好氧反硝化菌处理高浓度氨氮废水研究[J]. 环境工程技术学报,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019

    JIU W J, WANG P, YUE J W. Study on the treatment of wastewater containing high-concentration ammonia nitrogen with aerobic denitrifying bacteria[J]. Journal of Environmental Engineering Technology,2011,1(2):111-117. doi: 10.3969/j.issn.1674-991X.2011.02.019
    [48] 金位栋, 焦巨龙, 李剑屏, 等.微生物菌剂强化A/O脱氮反应器运行效果及微生物群落变化[J]. 环境工程技术学报,2021,11(2):354-364. doi: 10.12153/j.issn.1674-991X.20200083

    JIN W D, JIAO J L, LI J P, et al. Operation effect and microbial community changes of A/O denitrification reactor enhanced by microbial agents[J]. Journal of Environmental Engineering Technology,2021,11(2):354-364. ◇ doi: 10.12153/j.issn.1674-991X.20200083
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  228
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18

目录

    /

    返回文章
    返回