Spatial characteristics and influencing factors analysis of total phosphorus discharges in Tuojiang River Basin
-
摘要: 沱江流域总磷(TP)减排对于改善三峡库区乃至长江流域的水体富营养化有着重要的作用。以2017年为基准年,基于沱江流域工业、农业和生活源TP排放数据,分析沱江流域TP空间排放特征及污染源排放贡献率;通过引入入河系数,测算沱江流域TP入河量,分析TP的代谢路径;利用Pearson相关分析和线性回归分析,揭示TP排放主要影响因素。结果表明:2017年沱江流域TP排放量和入河量分别为8 324.0和3 676.9 t。排放量方面,成都市TP排放量最大,其次为宜宾市和泸州市;畜禽养殖TP排放量最大,其次为种植业和城镇生活。入河量方面,成都市TP入河量最大,其次为宜宾市和乐山市;城镇生活TP入河量最大,其次为畜禽养殖和农村生活。水田面积、国内生产总值和人口规模是影响沱江流域TP排放的主要因素。Abstract: Total phosphorus (TP) discharge reduction in Tuojiang River Basin plays an important role in improving water eutrophication in the Three Gorges Reservoir and the Yangtze River Basin. Taking 2017 as the base year, based on TP discharge data of industrial, agricultural and domestic sources in Tuojiang River Basin, the spatial characteristics and contribution rate of pollution sources of TP discharge were analyzed. By introducing the inflow coefficient, TP discharge into the river in Tuojiang River Basin was calculated and the metabolic pathways of TP were analyzed. Pearson correlation analysis and linear regression analysis were used to reveal the main influencing factors of TP discharge. The results showed that TP discharge and TP into the river were 8324.0 and 3676.9 t in Tuojiang River Basin in 2017, respectively. In terms of river inflow, TP discharge was the largest in Chengdu, followed by Yibin and Luzhou. Livestock breeding was the most significant anthropogenic source of TP emissions, followed by followed by crop farming and urban life. At the stage of entering the river, the TP emissions into the river were the largest in Chengdu, followed by Yibin and Leshan. Urban life was the most significant anthropogenic source of TP discharge into the river, followed by livestock breeding and rural life. Paddy field area, gross domestic product and population size were the main factors affecting TP discharge in Tuojiang River Basin.
-
Table 1. Inflow coefficient of different contribution sources of cities in Tuojiang River Basin
城市 工业源 畜禽养殖 种植业 水产养殖 城镇生活 农村生活 德阳市 1.00 0.25 0.03 1.00 1.00 0.30 成都市 1.00 0.30 0.01 1.00 1.00 0.35 眉山市 1.00 0.30 0.04 1.00 1.00 0.35 乐山市 1.00 0.30 0.07 1.00 1.00 0.35 资阳市 1.00 0.30 0.04 1.00 1.00 0.30 内江市 1.00 0.30 0.06 1.00 1.00 0.35 自贡市 1.00 0.30 0.04 1.00 1.00 0.35 宜宾市 1.00 0.30 0.06 1.00 1.00 0.35 泸州市 1.00 0.30 0.07 1.00 1.00 0.35 表 2 TP排放量和影响因素Pearson相关系数
Table 2. Correlation analysis of TP discharge and influencing factors
影响因素 TP排放量 GDP 0.827** 人均GDP 0.762* 人口数量 0.856** 人口密度 0.409 工业总产值 0.751* 畜禽养殖量 0.821** 旱地面积 0.543 水田面积 0.920** 园地面积 0.539 菜园面积 0.564 注:**表示在0.01 水平(双侧)上显著相关;*表示在0.05 水平(双侧)上显著相关。 -
[1] XIONG C H, GUO Z, CHEN S S, et al. Understanding the pathway of phosphorus metabolism in urban household consumption system: a case study of Dar Es Salaam, Tanzania[J]. Journal of Cleaner Production,2020,274:122874. doi: 10.1016/j.jclepro.2020.122874 [2] BOUGARNE L, ABBOU M B, HAJI M E, et al. Consequences of surface water eutrophication: remedy and environmental interest[J]. Materials Today:Proceedings,2019,13:654-662. doi: 10.1016/j.matpr.2019.04.025 [3] FINK G, ALCAMO J, FLÖRKE M, et al. Phosphorus loadings to the world's largest lakes: sources and trends[J]. Global Biogeochemical Cycles,2018,32(4):617-634. doi: 10.1002/2017GB005858 [4] HAN C N, ZHENG B H, QIN Y W, et al. Impact of upstream river inputs and reservoir operation on phosphorus fractions in water-particulate phases in the Three Gorges Reservoir[J]. Science of the Total Environment,2018,610/611:1546-1556. doi: 10.1016/j.scitotenv.2017.06.109 [5] LIU D D, BAI L, QIAO Q, et al. Anthropogenic total phosphorus emissions to the Tuojiang River Basin, China[J]. Journal of Cleaner Production,2021,294:126325. doi: 10.1016/j.jclepro.2021.126325 [6] 李雪迎, 白璐, 杨庆榜, 等.我国终点型生命周期影响评价模型及基准值初步研究[J]. 环境科学研究,2021,34(11):2778-2786.LI X Y, BAI L, YANG Q B, et al. Preliminary study on endpoint life cycle impact assessment model and normalisation value in China[J]. Research of Environmental Sciences,2021,34(11):2778-2786. [7] SHEN Z Y, CHEN L, DING X W, et al. Long-term variation (1960-2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River[J]. Journal of Hazardous Materials,2013,252/253:45-56. doi: 10.1016/j.jhazmat.2013.02.039 [8] POWERS S M, BRUULSEMA T W, BURT T P, et al. Long-term accumulation and transport of anthropogenic phosphorus in Three River Basins[J]. Nature Geoscience,2016,9(5):353-356. doi: 10.1038/ngeo2693 [9] ZHANG W Q, JIN X, CAO H M, et al. Water quality in representative Tuojiang River network in Southwest China[J]. Water,2018,10(7):864. doi: 10.3390/w10070864 [10] 柳强, 张鹏, 史箴, 等. 三峡库区上游沱江流域总磷浓度时空变化特性及影响因素分析[J]. 环境工程技术学报,2022,12(2):191-199.LIU Q, ZHANG P, SHI Z, et al.Characterization of the spatio-temporal variations of total phosphorus concentrations and influencing factors analysis in Tuojiang River Basin,an upstream tributary of the Three Gorges Reservoir[J]. Journal of Environmental Engineering Technology,2022,12(2):191-199. [11] 杨耿, 秦延文, 马迎群, 等.沱江流域磷石膏的磷形态组成及潜在释放特征[J]. 环境工程技术学报,2018,8(6):610-616. doi: 10.3969/j.issn.1674-991X.2018.06.081YANG G, QIN Y W, MA Y Q, et al. Phosphorus forms and potential release characteristics of phosphogypsum in Tuojiang River Basin[J]. Journal of Environmental Engineering Technology,2018,8(6):610-616. doi: 10.3969/j.issn.1674-991X.2018.06.081 [12] CAO Z J, ZHANG X B, AI N S. Effect of sediment on concentration of dissolved phosphorus in the Three Gorges Reservoir[J]. International Journal of Sediment Research,2011,26(1):87-95. doi: 10.1016/S1001-6279(11)60078-4 [13] 徐青, 刘霞, 余晓平, 等.沱江沉积物-水界面磷形态垂向分布及时空变化特征[J]. 岩矿测试,2019,38(6):668-680.XU Q, LIU X, YU X P, et al. Vertical distribution of phosphorus species at the sediment-water interface of the Tuojiang River and its spatial and temporal characteristics[J]. Rock and Mineral Analysis,2019,38(6):668-680. [14] 国家统计局四川调查总队. 四川调查年鉴: 2018[M]. 北京: 中国统计出版社, 2018. [15] 秦延文, 马迎群, 温泉, 等.沱江流域总磷污染负荷、成因及控制对策研究[J]. 环境科学与管理,2020,45(2):20-25. doi: 10.3969/j.issn.1673-1212.2020.02.005QIN Y W, MA Y Q, WEN Q, et al. Pollution load, causes and control strategy of total phosphorus pollution in Tuojiang River Basin[J]. Environmental Science and Management,2020,45(2):20-25. doi: 10.3969/j.issn.1673-1212.2020.02.005 [16] 桂平婧, 王丰, 李善朴, 等.基于阶段输出系数模型的农业非点源污染负荷估算与评价: 以四川省为例[J]. 浙江农业学报,2016,28(1):110-118. doi: 10.3969/j.issn.1004-1524.2016.01.19GUI P J, WANG F, LI S P, et al. Estimation and evaluation of agricultural non-point source pollution load by stage export coefficient model: a case study in Sichuan Province[J]. Acta Agriculturae Zhejiangensis,2016,28(1):110-118. doi: 10.3969/j.issn.1004-1524.2016.01.19 [17] ZHANG S H, HOU X N, WU C S, et al. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss[J]. Science of the Total Environment,2020,706:134489. doi: 10.1016/j.scitotenv.2019.134489 [18] ZHANG B Y, DING W, XU B, et al. Spatial characteristics of total phosphorus loads from different sources in the Lancang River Basin[J]. Science of the Total Environment,2020,722:137863. doi: 10.1016/j.scitotenv.2020.137863 [19] LIU D D, BAI L, LI X Y, et al. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China[J]. Resources, Conservation and Recycling,2022,176:105937. doi: 10.1016/j.resconrec.2021.105937 [20] 吴磊, 龙天渝, 王玉霞, 等.基于分布式水文模型的嘉陵江流域氮磷非点源污染负荷预测[J]. 农业工程学报,2011,27(3):55-60. doi: 10.3969/j.issn.1002-6819.2011.03.010WU L, LONG T Y, WANG Y X, et al. Prediction of non-point source nitrogen and phosphorus pollution load in Jialing River watershed based on distributed hydrological model[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(3):55-60. doi: 10.3969/j.issn.1002-6819.2011.03.010 [21] 何卓识, 霍守亮, 马春子, 等.气候变化对小流域氮、磷通量的影响: 以延安市河流流域为例[J]. 环境工程技术学报,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025HE Z S, HUO S L, MA C Z, et al. Impact of climate change on the variation of nitrogen and phosphorus fluxes at watershed scale: a case study in Watersheds of Yan'an City[J]. Journal of Environmental Engineering Technology,2020,10(6):964-970. doi: 10.12153/j.issn.1674-991X.20200025 [22] 胡芸芸, 王永东, 李廷轩, 等.沱江流域农业面源污染排放特征解析[J]. 中国农业科学,2015,48(18):3654-3665. doi: 10.3864/j.issn.0578-1752.2015.18.009HU Y Y, WANG Y D, LI T X, et al. Characteristics analysis of agricultural nonpoint source pollution on Tuojiang River Basin[J]. Scientia Agricultura Sinica,2015,48(18):3654-3665. doi: 10.3864/j.issn.0578-1752.2015.18.009 [23] 赵玉婷, 许亚宣, 李亚飞, 等.长江流域“三磷”污染问题与整治对策建议[J]. 环境影响评价,2020,42(6):1-5.ZHAO Y T, XU Y X, LI Y F, et al. The Current problems and countermeasures of the "Three Phosphorus" in the Yangtze River Basin[J]. Environmental Impact Assessment,2020,42(6):1-5. [24] ZHOU K, WU J X, LIU H C. Spatiotemporal variations and determinants of water pollutant discharge in the Yangtze River Economic Belt, China: a spatial econometric analysis[J]. Environmental Pollution,2021,271:116320. doi: 10.1016/j.envpol.2020.116320 [25] DING X W, SHEN Z Y, HONG Q, et al. Development and test of the export coefficient model in the upper reach of the Yangtze River[J]. Journal of Hydrology,2010,383(3/4):233-244. [26] 桂平婧, 王丰, 李善朴, 等.四川省农村生活非点源污染负荷估算及评价研究[J]. 中国农学通报,2015,31(18):152-162. doi: 10.11924/j.issn.1000-6850.casb15010234GUI P J, WANG F, LI S P, et al. Estimation and evaluation of non-point source pollution load in rural living of Sichuan Province[J]. Chinese Agricultural Science Bulletin,2015,31(18):152-162. doi: 10.11924/j.issn.1000-6850.casb15010234 [27] 秦延文, 赵艳民, 马迎群, 等.三峡水库氮磷污染防治政策建议: 生态补偿·污染控制·质量考核[J]. 环境科学研究,2018,31(1):1-8.QIN Y W, ZHAO Y M, MA Y Q, et al. Prevention and control of nitrogen, phosphorus pollution in the Three Gorges Reservoir: ecological compensation, pollution control, quality assessment[J]. Research of Environmental Sciences,2018,31(1):1-8. [28] CUI M, GUO Q J, WEI R F, et al. Human-driven spatiotemporal distribution of phosphorus flux in the environment of a Mega River Basin[J]. Science of the Total Environment,2021,752:141781. doi: 10.1016/j.scitotenv.2020.141781 [29] STROKAL M, KAHIL T, WADA Y, et al. Cost-effective management of coastal eutrophication: a case study for the Yangtze River Basin[J]. Resources, Conservation and Recycling,2020,154:104635. doi: 10.1016/j.resconrec.2019.104635 [30] WANG J L, CHEN G F, FU Z S, et al. Application performance and nutrient stoichiometric variation of ecological ditch systems in treating non-point source pollutants from paddy fields[J]. Agriculture, Ecosystems & Environment,2020,299:106989. [31] HU Y, LONG C M, WANG Y C, et al. Urban total phosphorus loads to the St. Clair-Detroit River System[J]. Journal of Great Lakes Research,2019,45(6):1142-1149. ◇ doi: 10.1016/j.jglr.2019.09.009