Application status and prospect of field ridge in agricultural non-point source pollution treatment
-
摘要:
农业面源污染是当前影响我国水环境质量持续改善的主要因素之一。农业面源污染中约1/4的氮、磷污染物来自种植业污染,其主要通过径流、侧渗和下渗等方式向受纳水体迁移。田埂作为农田环境的重要组成部分之一,是种植田块内污染物进入受纳水体的第一道处理设施,能有效减少径流、降低侧渗和减轻水土流失,从而降低种植田块向水体排放的污染物量,被认为是一项经济、简单又具有广泛推广使用基础的农业面源污染治理技术。基于文献分析,从降低农业面源污染的角度系统梳理了国内外有关田埂对农田退水中污染物去除效果的研究成果,综述了田埂的研究现状,阐述了田埂去除污染物的主要方式,分析了田埂去除污染物的可能机理,最后探讨了田埂广泛推广应用还需要关注的问题。
Abstract:Agricultural non-point source (AGNPS) pollution has become one of the main factor affecting the continuous improvement of water environment quality in China. Nitrogen and phosphorus pollutants from agricultural planting account for about a quarter of the total amount of water pollutants. Agricultural planting pollutants migrate to receiving water bodies mainly through runoff, lateral infiltration and infiltration. As one of the important components of the farmland environment, the ridge is the first treatment facility for pollutants in the field to enter the receiving water body. Field ridge can effectively reduce runoff, lateral seepage and soil erosion, and ultimately reduce the amount of planting pollutants directly discharged to the water body. As an economical and simple AGNPS control technology, it also has the basic conditions for widespread use. Based on extensive literature review, the existing research results of field ridges at home and abroad were systematically combed from the perspective of AGNPS pollution control, the research status of field ridges were summarized, the main ways of pollutant removal by field ridges were expounded, the possible mechanisms of pollutant removal by field ridges were analyzed, and finally discussed the problems that need to be paid attention to when it is widely used, in order to promote the in-depth study and standardized application of field ridge technology, and to provide technical support for AGNPS pollution control in China.
-
表 1 影响田埂对污染物去除效果的典型参数
Table 1. Several typical parameters affecting pollutant removal efficiency of field ridge
参数 污染物去除效果 水田,埂宽80 cm[70] TP 为90%;DTP为 80% 水田,埂宽60 cm[29] NO− 3-N 为8.51 kg/hm2;
NH+ 4-N为
5.29 kg/hm2水田,埂宽40 cm[69] NO− 3-N为 18.43%;NH+ 4-N和PO4 3−为 50% 水田,埂高20 cm[71] TP为 91%;TN为 90.8% 铁碳填料改造田埂[73] COD为 82.05%;TP为 98%;
NH+ 4-N为 85.48%;TN为 81.97%旱坡地,三叶草生物埂[74] TN为 19.7% 旱坡地,紫花苜蓿
生物埂[75]TP 为92.2%;TN为 93.1% 水田,埂宽60 cm,种豆[29] NO− 3-N为 11.15%;NH+ 4-N 为6.16% 旱田,种萝卜生物埂[76] TN 为82.9% 旱田,种大豆生物埂[77] TN 为59.5%;TP为 68.4% -
[1] 刘钦普.国内农田氮磷面源污染风险控制研究进展[J]. 江苏农业科学,2018,46(1):1-5. [2] HAN D M, CURRELL M J, CAO G L. Deep challenges for China's war on water pollution[J]. Environmental Pollution,2016,218:1222-1233. doi: 10.1016/j.envpol.2016.08.078 [3] 宋佳颖, 刘君, 宗海英, 等.硫脲改性猪粪生物质炭对模拟农田径流中镉和草甘膦吸附特征[J]. 环境科学研究,2021,34(2):356-364.SONG J Y, LIU J, ZONG H Y, et al. Adsorption characteristics of thiourea-modified pig manure biochar to cadmium and glyphosate in simulated farmland runoff[J]. Research of Environmental Sciences,2021,34(2):356-364. [4] 郭翔, 杜蕴慧, 刘孝富, 等.东江湖流域农业面源污染负荷研究[J]. 环境工程技术学报,2013,3(4):350-357.GUO X, DU Y H, LIU X F, et al. Research of agricultural non-point source pollution load in Dongjianghu Lake watershed[J]. Journal of Environmental Engineering Technology,2013,3(4):350-357. [5] WHITE P J, HAMMOND J P. Updating the estimate of the sources of phosphorus in UK waters[R]Coventry, UK: University of Warwick, 2006. [6] MCGARRIGL M. L, DONNELLEY K. Phosphorus loading from a rural catchment-River Deel, Country Mayo, Ireland: a tributray of Lough Conn[C]//Diffuse Pollution Conference Proceeding. Dublin: International Water Association, 2003. [7] SKARBOVIK E, STALNACKE P G. AUSTNES K, et al. Riverine inputs and direct discharges to Norwegian coastal waters[R]. Oslo: Norwe-gian Institute for Water Research, 2003. [8] ULÉN B, BECHMANN M, FÖLSTER J, et al. Agriculture as a phosphorus source for eutrophication in the north-west European countries, Norway, Sweden, United Kingdom and Ireland: a review[J]. Soil Use and Management,2007,23:5-15. doi: 10.1111/j.1475-2743.2007.00115.x [9] 温燕华, 刘可暄.国内外面源污染治理综述[J]. 北京水务,2020(2):29-31. doi: 10.19671/j.1673-4637.2020.02.007WEN Y H, LIU K X. Summary of non-point source pollution control at home and abroad[J]. Beijing Water,2020(2):29-31. doi: 10.19671/j.1673-4637.2020.02.007 [10] 生态环境部. 第二次全国污染源普查公报[A/OL]. (2020-06-16)[2021-10-05]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/W020200610353985963290.pdf. [11] 杨卫, 李瑞清.长江和汉江总磷污染特征及成因分析[J]. 中国农村水利水电,2021(1):42-47.YANG W, LI R Q. Characteristics and causes of the total phosphorus pollution in the Yangtze River and Han River[J]. China Rural Water and Hydropower,2021(1):42-47. [12] 张红举, 陈方.太湖流域面源污染现状及控制途径[J]. 水资源保护,2010,26(3):87-90.ZHANG H J, CHEN F. Non-point pollution statistics and control measures in Taihu Basin[J]. Water Resources Protection,2010,26(3):87-90. [13] 王思如, 杨大文, 孙金华, 等.我国农业面源污染现状与特征分析[J]. 水资源保护,2021,37(4):140-147.WANG S R, YANG D W, SUN J H, et al. Analysis on status and characteristics of agricultural non point source pollution in China[J]. Water Resources Protection,2021,37(4):140-147. [14] 秦迪岚, 罗岳平, 黄哲, 等.洞庭湖水环境污染状况与来源分析[J]. 环境科学与技术,2012,35(8):193-198.QIN D L, LUO Y P, HUANG Z, et al. Pollution status and source analysis of water environment in Dongting Lake[J]. Environmental Science & Technology,2012,35(8):193-198. [15] 李胜男, 李冀, 何康, 等.洞庭湖区沧浪河流域农业面源污染现状调查与分析[J]. 湖南农业科学,2018(5):56-60.LI S N, LI J, HE K, et al. Investigation of the agricultural non-point source pollution status in the Canglang River Basin of Hanshou County near Dongting Lake[J]. Hunan Agricultural Sciences,2018(5):56-60. [16] 卢少勇, 张萍, 潘成荣, 等.洞庭湖农业面源污染排放特征及控制对策研究[J]. 中国环境科学,2017,37(6):2278-2286.LU S Y, ZHANG P, PAN C R, et al. Agricultural non-point source pollution discharge characteristic and its control measures of Dongtinghu Lake[J]. China Environmental Science,2017,37(6):2278-2286. [17] 余红, 沈珍瑶.非点源污染不确定性研究进展[J]. 水资源保护,2008,24(1):1-5. doi: 10.3969/j.issn.1004-6933.2008.01.001YU H, SHEN Z Y. Uncertainty of non-point source pollution[J]. Water Resources Protection,2008,24(1):1-5. doi: 10.3969/j.issn.1004-6933.2008.01.001 [18] MELCHING C S, BAUWENS W. Uncertainty in coupled nonpoint source and stream water-quality models[J]. Journal of Water Resources Planning and Management,2001,127(6):403-413. doi: 10.1061/(ASCE)0733-9496(2001)127:6(403) [19] WU A W, MA Y H, FU B Y, et al. Reviews on agricultural nonpoint source pollution monitoring techniques and methods[J]. Agricultural Science & Technology,2014,15(12):2214-2217. [20] 甘曼琴, 荚力, 黄瑜, 等.合肥市环巢湖地区种植业面源污染监测与评价[J]. 环境监测管理与技术,2021,33(1):28-32. doi: 10.19501/j.cnki.1006-2009.2021.01.007GAN M Q, JIA L, HUANG Y, et al. Monitoring and evaluation of non-point source pollution of planting industry in Chaohu Lake area of Hefei[J]. The Administration and Technique of Environmental Monitoring,2021,33(1):28-32. doi: 10.19501/j.cnki.1006-2009.2021.01.007 [21] 涂小强, 傅春.非点源污染研究发展演化与前沿分析[J]. 人民长江,2021,52(4):47-54. doi: 10.16232/j.cnki.1001-4179.2021.04.008TU X Q, FU C. Evolution and frontier analysis of non-point source pollution research[J]. Yangtze River,2021,52(4):47-54. doi: 10.16232/j.cnki.1001-4179.2021.04.008 [22] 项颂, 吴越, 吕兴菊, 等.洱海流域农业面源污染空间分布特征及分类控制策略[J]. 环境科学研究,2020,33(11):2474-2483. doi: 10.13198/j.issn.1001-6929.2020.10.09XIANG S, WU Y, LÜ X J, et al. Characteristics and spatial distribution of agricultural non-point source pollution in Erhai Lake Basin and its classified control strategy[J]. Research of Environmental Sciences,2020,33(11):2474-2483. doi: 10.13198/j.issn.1001-6929.2020.10.09 [23] LIU R M, ZHANG P P, WANG X J, et al. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed[J]. Agricultural Water Management,2013,117:9-18. doi: 10.1016/j.agwat.2012.10.018 [24] 凌文翠, 范玉梅, 孙长虹, 等.非点源污染最佳管理措施之研究热点综述[J]. 环境污染与防治,2019,41(3):362-366. doi: 10.15985/j.cnki.1001-3865.2019.03.022LING W C, FAN Y M, SUN C H, et al. Best management practices for non-point sources pollution control: a review of current research focuses[J]. Environmental Pollution & Control,2019,41(3):362-366. doi: 10.15985/j.cnki.1001-3865.2019.03.022 [25] 吴永红, 胡正义, 杨林章.农业面源污染控制工程的“减源-拦截-修复”(3R)理论与实践[J]. 农业工程学报,2011,27(5):1-6.WU Y H, HU Z Y, YANG L Z. Strategies for controlling agricultural non-point source pollution: reduce-retain-restoration (3R) theory and its practice[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(5):1-6. [26] 杨林章, 吴永红.农业面源污染防控与水环境保护[J]. 中国科学院院刊,2018,33(2):168-176.YANG L Z, WU Y H. Prevention and control of agricultural non-point source pollution and aquatic environmental protection[J]. Bulletin of Chinese Academy of Sciences,2018,33(2):168-176. [27] 张全伟, 张永红, 张耀宇, 等.淅川县农业面源污染的防治与治理[J]. 吉林农业,2019(21):39. [28] RIBAUDO M O, HEIMLICH R, CLAASSEN R, et al. Least-cost management of nonpoint source pollution: source reduction versus interception strategies for controlling nitrogen loss in the Mississippi Basin[J]. Ecological Economics,2001,37(2):183-197. doi: 10.1016/S0921-8009(00)00273-1 [29] 李瑞鹏, 于建光, 常志州, 等.麦秸和奶牛场废弃物联合堆肥试验[J]. 江苏农业学报,2012,28(1):65-71.LI R P, YU J G, CHANG Z Z, et al. Co-composting of wheat straw and dairy waste[J]. Jiangsu Journal of Agricultural Sciences,2012,28(1):65-71. [30] 马强, 刘淑芳, 宇万太, 等.田埂宽度与种豆对稻田矿质氮侧向迁移影响[J]. 土壤通报,2019,50(3):585-596. doi: 10.19336/j.cnki.trtb.2019.03.12MA Q, LIU S F, YU W T, et al. Effects of paddy bund widthand soybean planting on lateral seepage of mineral nitrogen[J]. Chinese Journal of Soil Science,2019,50(3):585-596. doi: 10.19336/j.cnki.trtb.2019.03.12 [31] LI X N, ZHANG W W, WU J Y, et al. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain:a field study in a modern agricultural park[J]. Ecological Engineering,2021,169:106310. doi: 10.1016/j.ecoleng.2021.106310 [32] 肖其亮, 熊丽萍, 彭华, 等.不同基质组合对氮磷吸附能力的研究[J]. 环境科学研究,2022,35(5):1277-1287. doi: 10.13198/j.issn.1001-6929.2021.10.13XIAO Q L, XIONG L P, PENG H, et al. Nitrogen and phosphorus adsorption capacity of different substrate combination[J]. Research of Environmental Sciences,2022,35(5):1277-1287. doi: 10.13198/j.issn.1001-6929.2021.10.13 [33] 郭小玲.农村水污染治理综述[J]. 资源节约与环保,2021(3):78-79. doi: 10.16317/j.cnki.12-1377/x.2021.03.043 [34] 王宇娜, 国晓春, 卢少勇, 等.人工湿地对低污染水中氮去除的研究进展: 效果、机制和影响因素[J]. 农业资源与环境学报,2021,38(5):722-734.WANG Y N, GUO X C, LU S Y, et al. Review of nitrogen removal in low-polluted water by constructed wetlands: performance, mechanism, and influencing factors[J]. Journal of Agricultural Resources and Environment,2021,38(5):722-734. [35] NSENGA KUMWIMBA M, MENG F G, ISEYEMI O, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): design,mechanism,management strategies,and future directions[J]. Science of the Total Environment,2018,639:742-759. [36] LIN C, MA R H, XIONG J F. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties?A new insight of different soil P states[J]. Science of the Total Environment,2018,628/629:870-881. doi: 10.1016/j.scitotenv.2018.02.098 [37] 李云, 何志琴, 夏训峰, 等.国内外灰水处理技术研究进展[J]. 环境工程技术学报,2021,11(5):935-941.LI Y, HE Z Q, XIA X F, et al. Research progress of greywater treatment technology at home and abroad[J]. Journal of Environmental Engineering Technology,2021,11(5):935-941. [38] 杨思敏.农村污水治理技术研究进展[J]. 环境保护科学,2020,46(6):76-82. doi: 10.16803/j.cnki.issn.1004-6216.2020.06.013YANG S M. Progress on wastewater treatment technologies in rural area[J]. Environmental Protection Science,2020,46(6):76-82. doi: 10.16803/j.cnki.issn.1004-6216.2020.06.013 [39] TAYE G, POESEN J, VANMAERCKE M, et al. Evolution of the effectiveness of stone bunds and trenches in reducing runoff and soil loss in the semi-arid Ethiopian Highlands[J]. Zeitschrift Für Geomorphologie,2015,59(4):477-493. [40] TESHOME A, ROLKER D, de GRAAFF J. Financial viability of soil and water conservation technologies in northwestern Ethiopian Highlands[J]. Applied Geography,2013,37:139-149. doi: 10.1016/j.apgeog.2012.11.007 [41] 吕文星. 三峡库区坡耕地“地埂+植物篱”结构及营建模式[D]. 北京: 北京林业大学, 2011. [42] 孙琦伟, 吴普特, 王玉宝, 等.西北干旱地区农业健康用水量计算模型研究[J]. 中国生态农业学报,2012,20(2):181-188. doi: 10.3724/SP.J.1011.2012.00181SUN Q W, WU P T, WANG Y B, et al. Health volume of agricultural water consumption and its calculation model in the Heihe River Basin[J]. Chinese Journal of Eco-Agriculture,2012,20(2):181-188. doi: 10.3724/SP.J.1011.2012.00181 [43] WRIGHT D L, ROWLAND D, WHITTY A E B. Water use and irrigation management of agronomic crops[J/OL]. Agronomy, 2014.https://edis.ifas.ufl.edu/publication/AA131. [44] TSUBO M, SHU F K, BASNAYAKE J, et al. Effects of soil clay content on water balance and productivity in rainfed lowland rice ecosystem in northeast Thailand[J]. Plant Production Science,2007,10(2):232-241. doi: 10.1626/pps.10.232 [45] LAHUE G T, LINQUIST B A. The magnitude and variability of lateral seepage in California rice fields[J]. Journal of Hydrology,2019,574:202-210. doi: 10.1016/j.jhydrol.2019.04.030 [46] SHARMA P, BHUSHAN L, LADHA J, et al. Crop-water relations in rice-wheat cropping under different tillage systems and water-management practices in a marginally sodic, medium-textured soil[C]// nternational Workshop on Water-wise Rice Production, Los Baños, Philippines. Los Baños (Philippines): International Rice Research Institute, 2002. [47] NAN Z, WANG X Y, DU Y, et al. Critical period and pathways of water borne nitrogen loss from a rice paddy in northeast China[J]. Science of the Total Environment, 2021, 753: 142116. [48] LI J, WANG X X, BAI L L, et al. Quantification of lateral seepage from farmland during maize growing season in arid region[J]. Agricultural Water Management,2017,191:85-97. doi: 10.1016/j.agwat.2017.06.006 [49] PATHANIA P K, THAKUR R C. Effect of soil moisture conservation (bunding) on single and intercropped paddy rice (Oryza sativa L. )[J]. Soil and Tillage Research,1994,32(2/3):213-221. [50] 陈桂发, 付子轼, 刘福兴, 等.稻田防侧渗措施对水稻生产灌溉用水的减量效果[J]. 上海农业学报,2015,31(3):24-30. doi: 10.15955/j.issn1000-3924.2015.03.05CHEN G F, FU Z S, LIU F X, et al. Effect of side leakage-preventing measure on decrement of irrigation water for rice production[J]. Acta Agriculturae Shanghai,2015,31(3):24-30. doi: 10.15955/j.issn1000-3924.2015.03.05 [51] WU L, PENG M L, QIAO S S, et al. Assessing impacts of rainfall intensity and slope on dissolved and adsorbed nitrogen loss under bare loessial soil by simulated rainfalls[J]. CATENA,2018,170:51-63. doi: 10.1016/j.catena.2018.06.007 [52] 杨帆, 潘猛, 王佳巍.东北黑土区水土流失问题探讨[J]. 防护林科技,2011(3):107-109. doi: 10.13601/j.issn.1005-5215.2011.03.021 [53] 秦天枝.我国水土流失的原因、危害及对策[J]. 生态经济,2009,25(10):163-169.QIN T Z. Study on the technical assessment of soil and water conservation facilities acceptance[J]. Ecological Economy,2009,25(10):163-169. [54] 蒋光毅, 黄嵩, 郭宏忠.三峡库区水土流失综合治理现状与展望[J]. 中国水土保持,2021(8):27-29. doi: 10.14123/j.cnki.swcc.2021.0189JIANG G Y, HUANG S, GUO H Z. Present situation and prospect of integrated control of soil and water loss in the Three Gorges Reservoir area[J]. Soil and Water Conservation in China,2021(8):27-29. doi: 10.14123/j.cnki.swcc.2021.0189 [55] 李宗善, 杨磊, 王国梁, 等.黄土高原水土流失治理现状、问题及对策[J]. 生态学报,2019,39(20):7398-7409.LI Z S, YANG L, WANG G L, et al. The management of soil and water conservation in the Loess Plateau of China: present situations, problems, and counter-solutions[J]. Acta Ecologica Sinica,2019,39(20):7398-7409. [56] 宋春雨, 屈远强, 张兴义, 等.地埂水土保持技术回顾[J]. 土壤与作物,2018,7(1):1-12. doi: 10.11689/j.issn.2095-2961.2018.01.001SONG C Y, QU Y Q, ZHANG X Y, et al. Retrospect of contour bund for soil and water conservation[J]. Soils and Crops,2018,7(1):1-12. doi: 10.11689/j.issn.2095-2961.2018.01.001 [57] 袁东海, 王兆骞, 陈欣, 等.不同农作措施红壤坡耕地水土流失特征的研究[J]. 水土保持学报,2001,15(4):66-69. doi: 10.13870/j.cnki.stbcxb.2001.04.018YUAN D H, WANG Z Q, CHEN X, et al. Properties of soil and water loss from slope field in red soil in different farming systems[J]. Journal of Soil Water Conservation,2001,15(4):66-69. doi: 10.13870/j.cnki.stbcxb.2001.04.018 [58] 韦杰, 鲍玉海, 金慧芳, 等.三峡库区坡耕地有限顺坡耕作模式及减蚀效应[J]. 灌溉排水学报,2012,31(6):45-48. doi: 10.13522/j.cnki.ggps.2012.06.013WEI J, BAO Y H, JIN H F, et al. A downslope tillage system with limited slopelength on sloping farmlands in the Three Gorges area and its erosion reduction effects[J]. Journal of Irrigation and Drainage,2012,31(6):45-48. doi: 10.13522/j.cnki.ggps.2012.06.013 [59] ZHAO P, TANG X Y, TANG J L, et al. The nitrogen loss flushing mechanism in sloping farmlands of shallow Entisol in southwestern China: a study of the water source effect[J]. Arabian Journal of Geosciences,2015,8(12):10325-10337. doi: 10.1007/s12517-015-1983-4 [60] ZHAO Q H, LI D Q, ZHUO M N, et al. Effects of rainfall intensity and slope gradient on erosion characteristics of the red soil slope[J]. Stochastic Environmental Research and Risk Assessment,2015,29(2):609-621. doi: 10.1007/s00477-014-0896-1 [61] ISSAKA S, ASHRAF M A. Impact of soil erosion and degradation on water quality: a review[J]. Geology, Ecology, and Landscapes,2017,1(1):1-11. doi: 10.1080/24749508.2017.1301053 [62] 冀瑞锋. 污水土地处理中土壤氮、磷转化运移的试验研究[D]. 太原: 太原理工大学, 2010. [63] 湖南省农业厅农田水利局.蓄水保水经验十条[J]. 农田水利,1960(4):9. [64] 承德地区农业科学研究所五道沟基点工作组.山区坡地保持水土的种植方法[J]. 华北农学报,1965(1):77-80. [65] 江苏省农科所经作组.大种田埂豆[J]. 江苏农业科技,1973,1(3):4. [66] 徐友信, 刘金铜, 李宗珍, 等.我国梯田生物埂的研究现状及展望[J]. 安徽农业科学,2009,37(9):4228-4230. doi: 10.13989/j.cnki.0517-6611.2009.09.060XU Y X, LIU J T, LI Z Z, et al. Research actuality and prospect of terrace bio-embankment in China[J]. Journal of Anhui Agricultural Sciences,2009,37(9):4228-4230. doi: 10.13989/j.cnki.0517-6611.2009.09.060 [67] SRIVASTAVA R K, SHARMA H C, RAINA A K. Suitability of soil and water conservation measures for watershed management using geographical information system[J]. Journal of Soil and Water Conservation,2010,9(3):148-153. [68] JANSSEN M, LENNARTZ B. Characterization of preferential flow pathways through paddy bunds with dye tracer tests[J]. Soil Science Society of America Journal,2008,72(6):1756-1766. doi: 10.2136/sssaj2008.0032 [69] 周根娣, 梁新强, 田光明, 等.田埂宽度对水田无机氮磷侧渗流失的影响[J]. 上海农业学报,2006,22(2):68-70.ZHOU G D, LIANG X Q, TIAN G M, et al. Effects of field ridge width on lateral seepage loss of inorganic N & P in rice field[J]. Acta Agriculturae Shanghai,2006,22(2):68-70. [70] 祝惠, 阎百兴.三江平原稻田磷输出及迁移过程研究[J]. 湿地科学,2010,8(3):266-272. doi: 10.13248/j.cnki.wetlandsci.2010.03.013ZHU H, YAN B X. Export of phosphorus from paddy field and its transport process in Sanjiang plain[J]. Wetland Science,2010,8(3):266-272. doi: 10.13248/j.cnki.wetlandsci.2010.03.013 [71] YUAN Z W, PANG Y J, GAO J Q, et al. Improving quantification of rainfall runoff pollutant loads with consideration of path curb and field ridge[J]. Resources, Environment and Sustainability,2021,6:100042. doi: 10.1016/j.resenv.2021.100042 [72] 田玉华, 尹斌, 贺发云, 等.太湖地区稻季的氮素径流损失研究[J]. 土壤学报,2007,44(6):1070-1075. doi: 10.3321/j.issn:0564-3929.2007.06.016TIAN Y H, YIN B, HE F Y, et al. Nitrogen loss with runoff in rice season in the Taihu Lake region, China[J]. Acta Pedologica Sinica,2007,44(6):1070-1075. doi: 10.3321/j.issn:0564-3929.2007.06.016 [73] 王淑君. 三峡库区重庆段农业面源污染的铁碳微电解强化-生态田埂控制技术研究[D]. 北京: 北京林业大学, 2020. [74] 杨世琦, 邢磊, 刘宏元, 等.植物篱埂垄向区田技术对坡耕地水土和氮磷流失控制研究[J]. 农业工程学报,2019,35(22):209-215.YANG S Q, XING L, LIU H Y, et al. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(22):209-215. [75] WANG Q, LI F C, ZHAO X L, et al. Runoff and nutrient losses in alfalfa (Medicago sativa L.) production with tied-ridge-furrow rainwater harvesting on sloping land[J]. International Soil and Water Conservation Research,2022,10(2):308-323. doi: 10.1016/j.iswcr.2021.09.005 [76] KIM D H, KIM S M. Evaluation for non-point sources reduction effect by vegetated ridge and silt fence[J]. Journal of the Korean Society of Agricultural Engineers,2015,57(5):129-137. doi: 10.5389/KSAE.2015.57.5.129 [77] KIM S J, PARK T Y, KIM S M, et al. A plot scale experiment to analysis the NPS reduction by silt fence and vegetated ridge for non-irrigated cropland[J]. Journal of the Korean Society of Agricultural Engineers,2012,54(4):19-27. doi: 10.5389/KSAE.2012.54.4.019 [78] 陈新军, 邓海瑜, 苗德志, 等.石笼网技术在梯田建设中的应用[J]. 中国水土保持,2017(6):9-12. doi: 10.3969/j.issn.1000-0941.2017.06.006 [79] 李泽芳. 膨胀土梯田田坎改良技术研究[D]. 杨凌: 西北农林科技大学, 2021. [80] 王莉霞, 欧洋, 祝惠, 等. 一种降低稻田面源污染侧渗的生态田埂: CN103410118B[P]. 2015-05-20. [81] 高鹏, 李肖, 刘潘伟, 等. 一种植草石笼生态梯田埂: CN105064273B[P]. 2016-11-30. [82] 王玮. 水生和陆生植物对污水中污染物的净化功能及其机理[D]. 南宁: 广西大学, 2019. [83] 雷宝坤, 续勇波, 陈安强, 等. 一种利用生物田埂控制农田氮磷面源污染的方法: CN103270832B[P]. 2015-07-15. [84] 任丽华, 贾天会, 李欣峰, 等.辽东山区坡耕地地埂植物篱水土保持及面源污染物阻控效果研究[J]. 水土保持应用技术,2018(1):1-3. doi: 10.3969/j.issn.1673-5366.2018.01.01 [85] 王涛, 何丙辉, 秦川, 等.不同种植年限黄花生物埂护坡土壤团聚体组成及其稳定性[J]. 水土保持学报,2014,28(5):153-158. doi: 10.13870/j.cnki.stbcxb.2014.05.027WANG T, HE B H, QIN C, et al. The composition and stability of soil aggregates with different planting years of Hemerocallis citrinain terrace biological bank[J]. Journal of Soil and Water Conservation,2014,28(5):153-158. doi: 10.13870/j.cnki.stbcxb.2014.05.027 [86] PARK S I, YANG H I, PARK H J, et al. Vegetated ridge and sandbag may not reduce soil erosion and loss of carbon and nutrients from upland fields[J]. Soil Science and Plant Nutrition,2020,66(1):195-205. ◇ doi: 10.1080/00380768.2019.1696152