Study on the performance of O3-PAC-ceramic membrane coupling technology for phenol wastewater treatment
-
摘要:
臭氧-粉末活性炭(O3-PAC)废水处理技术具备发展潜力,但废水与PAC无法有效分离成为该技术的瓶颈。利用陶瓷膜技术构建了O3-PAC-陶瓷膜去除苯酚耦合体系,采用反应动力学、串联阻力模型以及Hermans-Bredee模型分别对COD去除和PAC膜分离性能进行研究。结果表明:O3-PAC在40 min内对COD去除率达到100%,反应速率是臭氧-颗粒活性炭(O3-GAC)的2.5倍;采用陶瓷膜对PAC和废水进行分离,操作压力超过0.06 MPa时,可逆污染向不可逆污染转化;膜污染是由完全堵塞向滤饼堵塞转化的过程,提高废水在膜表面的流速可以破坏滤饼层的形成;试验连续进行6个周期后,40 min时模拟废水的COD去除率保持在95%以上,但不可逆污染有增加的趋势。
Abstract:Ozone-powdered activated carbon (O3-PAC) wastewater treatment technology has good development potential, but the inability to effectively separate wastewater from PAC has become the technology bottleneck. A coupled O3-PAC-ceramic membrane technology system was constructed with phenol as the target pollutant. The technology was investigated in terms of the performance of COD removal and membrane separation of PAC by reaction kinetics, the tandem resistance model and the Hermans-Bredee model, respectively. The results showed that O3-PAC was able to achieve 100% COD removal within 40 min, and the reaction rate was 2.5 times that of O3-GAC. PAC and wastewater were separated by the ceramic membrane, and when the operating pressure exceeded 0.06 MPa, the reversible contamination was converted to irreversible contamination. Membrane contamination was a process of conversion from complete blockage to filter cake blockage, and increasing the wastewater flow rate on the membrane surface could destroy the formation of the filter cake layer. After six consecutive cycles of the experiment, COD removal rate of the simulated wastewater at 40 min remained above 95%, but the irreversible contamination of the ceramic membrane tended to increase.
-
Key words:
- ozone /
- powdered activated carbon /
- ceramic membrane /
- membrane fouling
-
表 1 COD去除率随时间变化拟一级动力学结果
Table 1. Simulation of the first-order kinetic results of COD removal rate variation with time
反应条件 动力学参数 k/min-1 R2 O3 0.0251 0.9921 O3+GAC 0.0295 0.9934 O3+PAC 0.0744 0.9936 -
[1] JAHANBAN-ESFAHLAN A, JAHANBAN-ESFAHLAN R, TABIBIAZAR M, et al. Recent advances in the use of walnut (Juglans regia L. ) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials[J]. RSC Advances,2020,10(12):7026-7047. doi: 10.1039/C9RA10084A [2] LI S, ZENG Z X, XUE W L. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics[J]. Environmental Technology,2019,40(14):1810-1820. doi: 10.1080/09593330.2018.1430172 [3] 钟楚娴.臭氧-活性炭工艺污水处理厂深度处理中试研究[J]. 水处理技术,2021,47(10):117-120. doi: 10.16796/j.cnki.1000-3770.2021.10.025ZHONG C X. Pilot-scale study on advanced treatment of wastewater treatment plant by ozone and activated carbon process[J]. Technology of Water Treatment,2021,47(10):117-120. doi: 10.16796/j.cnki.1000-3770.2021.10.025 [4] 贾鼎, 高媛媛, 牛志远, 等.生物氧化臭氧活性炭联用工艺处理微染污水[J]. 水处理技术,2016,42(11):73-77. doi: 10.16796/j.cnki.1000-3770.2016.11.015JIA D, GAO Y Y, NIU Z Y, et al. Process of ozonation with the bio-oxidation and biological activated carbon in micro-polluted water treatment[J]. Technology of Water Treatment,2016,42(11):73-77. doi: 10.16796/j.cnki.1000-3770.2016.11.015 [5] 陈斌, 唐晶, 叶青徽, 等.改良型AAO-磁混凝沉淀-臭氧-活性炭工艺在城镇污水处理厂中的应用实例[J]. 工业用水与废水,2021,52(4):81-84. doi: 10.3969/j.issn.1009-2455.2021.04.020CHEN B, TANG J, YE Q H, et al. An application example of improved AAO-magnetic coagulation sedimentation-ozone-activated carbon process in urban sewage treatment plant[J]. Industrial Water& Wastewater,2021,52(4):81-84. doi: 10.3969/j.issn.1009-2455.2021.04.020 [6] 殷祺, 郭小龙, 桂波, 等.超滤-臭氧生物活性炭深度工艺处理太湖水的中试研究[J]. 给水排水,2019,55(11):9-12. doi: 10.13789/j.cnki.wwe1964.2019.11.002YIN Q, GUO X L, GUI B, et al. Pilot experiment of ultrafiltration-ozone-biological activated carbon advanced process for treatment of Taihu Lake[J]. Water & Wastewater Engineering,2019,55(11):9-12. doi: 10.13789/j.cnki.wwe1964.2019.11.002 [7] 史之源, 郭铃, 于水利, 等.东太湖水源水致嗅氨基酸以及常规与O3-PAC工艺的处理效能[J]. 给水排水,2020,56(2):14-19.SHI Z Y, GUO L, YU S L, et al. Odor-related amino acids in East Tai Lake and its treatment technology[J]. Water & Wastewater Engineering,2020,56(2):14-19. [8] WANG H, LIN X Z, HUANG Y X, et al. Two advanced oxidation pathways of modified iron-shavings participation in ozonation[J]. Separation and Purification Technology,2020,244:116838. doi: 10.1016/j.seppur.2020.116838 [9] 马亚敏, 陈英杰, 袁海明, 等.厌氧陶瓷膜反应器-双膜法回用汽车零配件生产废水[J]. 水处理技术,2021,47(8):128-131. doi: 10.16796/j.cnki.1000-3770.2021.08.025MA Y M, CHEN Y J, YUAN H M, et al. Application of anaerobic ceramic membrane bioreactor and double membrane method in automobile spare parts manufacturing wastewater recycling project[J]. Technology of Water Treatment,2021,47(8):128-131. doi: 10.16796/j.cnki.1000-3770.2021.08.025 [10] LEE S J, DILAVER M, PARK P K, et al. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models[J]. Journal of Membrane Science,2013,432:97-105. doi: 10.1016/j.memsci.2013.01.013 [11] 王培良, 钱锋, 宋永会, 等.臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061WANG P L, QIAN F, SONG Y H, et al. Degradation mechanisms of sulfadiazine in aqueous solution by ozonation[J]. Journal of Environmental Engineering Technology,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061 [12] 孙丽华, 刘烨辉, 贺宁, 等.粉末活性炭-超滤组合工艺对二级出水中污染物的去除及膜污染机制研究[J]. 环境污染与防治,2020,42(7):801-806.SUN L H, LIU Y H, HE N, et al. Removal of pollutants in secondary effluent by PAC-UF combined process and membrane fouling mechanism[J]. Environmental Pollution & Control,2020,42(7):801-806. [13] HO C C, ZYDNEY A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration[J]. Journal of Colloid and Interface Science,2000,232(2):389-399. doi: 10.1006/jcis.2000.7231 [14] YUAN W, KOCIC A, ZYDNEY A L. Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model[J]. Journal of Membrane Science,2002,198(1):51-62. doi: 10.1016/S0376-7388(01)00622-6 [15] 马琳, 秦国彤.膜污染的机理和数学模型研究进展[J]. 水处理技术,2007,33(6):1-4. doi: 10.3969/j.issn.1000-3770.2007.06.001MA L, QIN G T. Mechanism and mathematical models of membrane fouling[J]. Technology of Water Treatment,2007,33(6):1-4. doi: 10.3969/j.issn.1000-3770.2007.06.001 [16] GRANZOTO M R, SEABRA I, MALVESTITI J A, et al. Integration of ozone, UV/H2O2 and GAC in a multi-barrier treatment for secondary effluent polishing: reuse parameters and micropollutants removal[J]. Science of the Total Environment,2021,759:143498. doi: 10.1016/j.scitotenv.2020.143498 [17] KIM J, BRUGGEN R V D. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment[J]. Environmental Pollution,2010,158(7):2335-2349. doi: 10.1016/j.envpol.2010.03.024 [18] 刘彦伶, 李天玉, 王小毛, 等.高压膜表面性质对膜污染的影响机制[J]. 环境工程,2021,39(7):46-53. doi: 10.13205/j.hjgc.202107005LIU Y L, LI T Y, WANG X M, et al. Influence mechanism of surface properties on fouling behaviors of high-pressure membranes[J]. Environmental Engineering,2021,39(7):46-53. ⊗ doi: 10.13205/j.hjgc.202107005