留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

O3-PAC-陶瓷膜耦合技术处理苯酚废水性能研究

杜明辉 张旺 李丽萍 张耀宗 孙晓明

杜明辉,张旺,李丽萍,等.O3-PAC-陶瓷膜耦合技术处理苯酚废水性能研究[J].环境工程技术学报,2023,13(1):240-247 doi: 10.12153/j.issn.1674-991X.20210610
引用本文: 杜明辉,张旺,李丽萍,等.O3-PAC-陶瓷膜耦合技术处理苯酚废水性能研究[J].环境工程技术学报,2023,13(1):240-247 doi: 10.12153/j.issn.1674-991X.20210610
DU M H,ZHANG W,LI L P,et al.Study on the performance of O3-PAC-ceramic membrane coupling technology for phenol wastewater treatment[J].Journal of Environmental Engineering Technology,2023,13(1):240-247 doi: 10.12153/j.issn.1674-991X.20210610
Citation: DU M H,ZHANG W,LI L P,et al.Study on the performance of O3-PAC-ceramic membrane coupling technology for phenol wastewater treatment[J].Journal of Environmental Engineering Technology,2023,13(1):240-247 doi: 10.12153/j.issn.1674-991X.20210610

O3-PAC-陶瓷膜耦合技术处理苯酚废水性能研究

doi: 10.12153/j.issn.1674-991X.20210610
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07402-002),国家环境保护生态工业重点实验室开放基金(2022KFF-15),中央级公益性科研院所基本科研业务费专项(2022YSKY-09)
详细信息
    作者简介:

    杜明辉(1991—),男,硕士,主要从事水污染控制与废水资源化研究,dmh17367582496@163.com

    通讯作者:

    孙晓明(1978—),男,研究员,博士,主要从事水污染控制与废水资源化研究,sunxm52@126.com

  • 中图分类号: X703

Study on the performance of O3-PAC-ceramic membrane coupling technology for phenol wastewater treatment

  • 摘要:

    臭氧-粉末活性炭(O3-PAC)废水处理技术具备发展潜力,但废水与PAC无法有效分离成为该技术的瓶颈。利用陶瓷膜技术构建了O3-PAC-陶瓷膜去除苯酚耦合体系,采用反应动力学、串联阻力模型以及Hermans-Bredee模型分别对COD去除和PAC膜分离性能进行研究。结果表明:O3-PAC在40 min内对COD去除率达到100%,反应速率是臭氧-颗粒活性炭(O3-GAC)的2.5倍;采用陶瓷膜对PAC和废水进行分离,操作压力超过0.06 MPa时,可逆污染向不可逆污染转化;膜污染是由完全堵塞向滤饼堵塞转化的过程,提高废水在膜表面的流速可以破坏滤饼层的形成;试验连续进行6个周期后,40 min时模拟废水的COD去除率保持在95%以上,但不可逆污染有增加的趋势。

     

  • 图  1  试验装置

    Figure  1.  Experimental apparatus

    图  2  不同氧化方式下COD去除率变化

    Figure  2.  Variations of COD removal rate under different oxidation methods

    图  3  COD去除率随PAC投加量的变化

    Figure  3.  Variation of COD removal rate with PAC dosage

    图  4  GAC和PAC吸附去除COD差异

    Figure  4.  Differences of COD removal by GAC and PAC adsorption

    图  5  反应过程中的液相O3浓度变化

    Figure  5.  Variation of liquid phase ozone concentration during the reaction

    图  6  操作压力对陶瓷膜过滤的影响

    Figure  6.  Influence of operating pressure on ceramic membrane filtration

    图  7  搅拌速度对膜比通量的影响

    Figure  7.  Effect of stirring speed on membrane flux

    图  8  基于Hermans-Bredee的膜堵塞理论分析

    Figure  8.  Theoretical analysis of membrane clogging based on Hermans-Bredee

    图  9  连续运行6次COD去除率和陶瓷膜阻力的变化

    Figure  9.  Variation of COD removal rate and ceramic membrane resistance after 6 consecutive runs

    图  10  连续试验前后PAC样品与陶瓷膜片扫描电镜图像

    Figure  10.  SEM images of PAC samples and ceramic membrane before and after consecutive experiments

    表  1  COD去除率随时间变化拟一级动力学结果

    Table  1.   Simulation of the first-order kinetic results of COD removal rate variation with time

    反应条件动力学参数
    k/min-1R2
    O30.02510.9921
    O3+GAC0.02950.9934
    O3+PAC0.07440.9936
    下载: 导出CSV
  • [1] JAHANBAN-ESFAHLAN A, JAHANBAN-ESFAHLAN R, TABIBIAZAR M, et al. Recent advances in the use of walnut (Juglans regia L. ) shell as a valuable plant-based bio-sorbent for the removal of hazardous materials[J]. RSC Advances,2020,10(12):7026-7047. doi: 10.1039/C9RA10084A
    [2] LI S, ZENG Z X, XUE W L. Adsorption of lead ion from aqueous solution by modified walnut shell: kinetics and thermodynamics[J]. Environmental Technology,2019,40(14):1810-1820. doi: 10.1080/09593330.2018.1430172
    [3] 钟楚娴.臭氧-活性炭工艺污水处理厂深度处理中试研究[J]. 水处理技术,2021,47(10):117-120. doi: 10.16796/j.cnki.1000-3770.2021.10.025

    ZHONG C X. Pilot-scale study on advanced treatment of wastewater treatment plant by ozone and activated carbon process[J]. Technology of Water Treatment,2021,47(10):117-120. doi: 10.16796/j.cnki.1000-3770.2021.10.025
    [4] 贾鼎, 高媛媛, 牛志远, 等.生物氧化臭氧活性炭联用工艺处理微染污水[J]. 水处理技术,2016,42(11):73-77. doi: 10.16796/j.cnki.1000-3770.2016.11.015

    JIA D, GAO Y Y, NIU Z Y, et al. Process of ozonation with the bio-oxidation and biological activated carbon in micro-polluted water treatment[J]. Technology of Water Treatment,2016,42(11):73-77. doi: 10.16796/j.cnki.1000-3770.2016.11.015
    [5] 陈斌, 唐晶, 叶青徽, 等.改良型AAO-磁混凝沉淀-臭氧-活性炭工艺在城镇污水处理厂中的应用实例[J]. 工业用水与废水,2021,52(4):81-84. doi: 10.3969/j.issn.1009-2455.2021.04.020

    CHEN B, TANG J, YE Q H, et al. An application example of improved AAO-magnetic coagulation sedimentation-ozone-activated carbon process in urban sewage treatment plant[J]. Industrial Water& Wastewater,2021,52(4):81-84. doi: 10.3969/j.issn.1009-2455.2021.04.020
    [6] 殷祺, 郭小龙, 桂波, 等.超滤-臭氧生物活性炭深度工艺处理太湖水的中试研究[J]. 给水排水,2019,55(11):9-12. doi: 10.13789/j.cnki.wwe1964.2019.11.002

    YIN Q, GUO X L, GUI B, et al. Pilot experiment of ultrafiltration-ozone-biological activated carbon advanced process for treatment of Taihu Lake[J]. Water & Wastewater Engineering,2019,55(11):9-12. doi: 10.13789/j.cnki.wwe1964.2019.11.002
    [7] 史之源, 郭铃, 于水利, 等.东太湖水源水致嗅氨基酸以及常规与O3-PAC工艺的处理效能[J]. 给水排水,2020,56(2):14-19.

    SHI Z Y, GUO L, YU S L, et al. Odor-related amino acids in East Tai Lake and its treatment technology[J]. Water & Wastewater Engineering,2020,56(2):14-19.
    [8] WANG H, LIN X Z, HUANG Y X, et al. Two advanced oxidation pathways of modified iron-shavings participation in ozonation[J]. Separation and Purification Technology,2020,244:116838. doi: 10.1016/j.seppur.2020.116838
    [9] 马亚敏, 陈英杰, 袁海明, 等.厌氧陶瓷膜反应器-双膜法回用汽车零配件生产废水[J]. 水处理技术,2021,47(8):128-131. doi: 10.16796/j.cnki.1000-3770.2021.08.025

    MA Y M, CHEN Y J, YUAN H M, et al. Application of anaerobic ceramic membrane bioreactor and double membrane method in automobile spare parts manufacturing wastewater recycling project[J]. Technology of Water Treatment,2021,47(8):128-131. doi: 10.16796/j.cnki.1000-3770.2021.08.025
    [10] LEE S J, DILAVER M, PARK P K, et al. Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models[J]. Journal of Membrane Science,2013,432:97-105. doi: 10.1016/j.memsci.2013.01.013
    [11] 王培良, 钱锋, 宋永会, 等.臭氧氧化降解水中磺胺嘧啶的机理研究[J]. 环境工程技术学报,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061

    WANG P L, QIAN F, SONG Y H, et al. Degradation mechanisms of sulfadiazine in aqueous solution by ozonation[J]. Journal of Environmental Engineering Technology,2017,7(4):451-456. doi: 10.3969/j.issn.1674-991X.2017.04.061
    [12] 孙丽华, 刘烨辉, 贺宁, 等.粉末活性炭-超滤组合工艺对二级出水中污染物的去除及膜污染机制研究[J]. 环境污染与防治,2020,42(7):801-806.

    SUN L H, LIU Y H, HE N, et al. Removal of pollutants in secondary effluent by PAC-UF combined process and membrane fouling mechanism[J]. Environmental Pollution & Control,2020,42(7):801-806.
    [13] HO C C, ZYDNEY A L. A combined pore blockage and cake filtration model for protein fouling during microfiltration[J]. Journal of Colloid and Interface Science,2000,232(2):389-399. doi: 10.1006/jcis.2000.7231
    [14] YUAN W, KOCIC A, ZYDNEY A L. Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model[J]. Journal of Membrane Science,2002,198(1):51-62. doi: 10.1016/S0376-7388(01)00622-6
    [15] 马琳, 秦国彤.膜污染的机理和数学模型研究进展[J]. 水处理技术,2007,33(6):1-4. doi: 10.3969/j.issn.1000-3770.2007.06.001

    MA L, QIN G T. Mechanism and mathematical models of membrane fouling[J]. Technology of Water Treatment,2007,33(6):1-4. doi: 10.3969/j.issn.1000-3770.2007.06.001
    [16] GRANZOTO M R, SEABRA I, MALVESTITI J A, et al. Integration of ozone, UV/H2O2 and GAC in a multi-barrier treatment for secondary effluent polishing: reuse parameters and micropollutants removal[J]. Science of the Total Environment,2021,759:143498. doi: 10.1016/j.scitotenv.2020.143498
    [17] KIM J, BRUGGEN R V D. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment[J]. Environmental Pollution,2010,158(7):2335-2349. doi: 10.1016/j.envpol.2010.03.024
    [18] 刘彦伶, 李天玉, 王小毛, 等.高压膜表面性质对膜污染的影响机制[J]. 环境工程,2021,39(7):46-53. doi: 10.13205/j.hjgc.202107005

    LIU Y L, LI T Y, WANG X M, et al. Influence mechanism of surface properties on fouling behaviors of high-pressure membranes[J]. Environmental Engineering,2021,39(7):46-53. ⊗ doi: 10.13205/j.hjgc.202107005
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  159
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-24

目录

    /

    返回文章
    返回