留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用含重金属土壤制备烧结砖可行性及环境安全性研究

崔长颢 杨柳阳 王雪娇 闫大海

崔长颢,杨柳阳,王雪娇,等.利用含重金属土壤制备烧结砖可行性及环境安全性研究[J].环境工程技术学报,2023,13(1):312-317 doi: 10.12153/j.issn.1674-991X.20210613
引用本文: 崔长颢,杨柳阳,王雪娇,等.利用含重金属土壤制备烧结砖可行性及环境安全性研究[J].环境工程技术学报,2023,13(1):312-317 doi: 10.12153/j.issn.1674-991X.20210613
CUI C H,YANG L Y,WANG X J,et al.Feasibility and environmental safety investigation of making fired bricks by using heavy metals-contained soil[J].Journal of Environmental Engineering Technology,2023,13(1):312-317 doi: 10.12153/j.issn.1674-991X.20210613
Citation: CUI C H,YANG L Y,WANG X J,et al.Feasibility and environmental safety investigation of making fired bricks by using heavy metals-contained soil[J].Journal of Environmental Engineering Technology,2023,13(1):312-317 doi: 10.12153/j.issn.1674-991X.20210613

利用含重金属土壤制备烧结砖可行性及环境安全性研究

doi: 10.12153/j.issn.1674-991X.20210613
基金项目: 中央级公益性科研院所基本科研业务专项(2019YSKY-016)
详细信息
    作者简介:

    崔长颢(1994—),男,工程师,硕士,主要从事固体废物环境管理研究工作,2627357570@qq.com

    通讯作者:

    闫大海(1979—),男,研究员,博士,主要从事固体废物处理技术研究工作,seavsland@163.com

  • 中图分类号: X705

Feasibility and environmental safety investigation of making fired bricks by using heavy metals-contained soil

  • 摘要:

    为探明利用含重金属土壤作为页岩替代原料制备烧结砖的可行性和环境安全性,选取某砖窑以70%的比例掺加该土壤替代页岩开展工业化试验,研究重金属在烟气中的排放情况及在成品砖中的浸出率和分配规律。结果显示:土壤中SiO2、Al2O3和Fe2O3浓度与页岩原料相似,可以用作页岩原料的替代;烧制的成品砖力学性能符合产品质量标准。在以含重金属土壤为原料的砖块烧结过程中,烟气中常规污染物和重金属污染物排放均满足相关标准,环境风险可控;烧结砖中可浸出重金属浓度显著低于GB 30760—2014《水泥窑协同处置固体废物技术规范》浸出限值,砖块在使用过程中的重金属浸出风险较低;As、Cd、Cr、Mn、Ni、Pb和Cu在烧结过程中基本赋存在成品砖里,经烟气挥发和湿法脱硫压滤后留存于脱硫滤饼中的重金属含量极低。研究表明,利用含重金属土壤制备烧结砖从产品力学性能及环境安全性上均能满足现有标准,具有一定的资源化利用效益。

     

  • 图  1  砖窑烧结工艺流程

    Figure  1.  Manufacturing process of fired bricks tunnel kiln

    表  1  试验用页岩和土壤的化学组成

    Table  1.   Chemical composition of shale and soil for test % 

    试验原料SiO2Al2O3Fe2O3CaONa2OK2OMgO
    页岩68.418.94.62.50.12.61.8
    土壤62.619.46.74.00.22.41.5
    下载: 导出CSV

    表  2  试验用页岩和土壤中重金属浓度

    Table  2.   Heavy metal concentrations of shale and soil for test mg/kg 

    试验原料AsCdCrMnNiPbCu
    页岩35.65.0122.3599.041.182.848.2
    土壤5.21.5400.0617.269.055.726.4
    下载: 导出CSV

    表  3  2种工况下烟气中常规污染物浓度

    Table  3.   Concentrations of general pollutants in flue gas under two conditions mg/m3 

    污染物空白工况掺烧工况GB 29620—2013
    排放限值
    颗粒物3.53.630
    SO22.610.5150
    NOx18.39.1200
    氟化物0.670.313
    下载: 导出CSV

    表  4  2种工况下烟气中重金属浓度

    Table  4.   Concentrations of heavy metals in flue gas under two conditions mg/m3 

    重金属空白工况掺烧工况标准排放限值
    GB 16297—1996GB 18484—2020
    As0.0370.0280.500
    Cd0.1150.0930.8500.050
    Cr0.4090.4530.500
    Mn0.9871.075
    Ni0.3060.2894.300
    Pb0.0800.0940.7000.500
    Cu0.1170.122
    下载: 导出CSV

    表  5  成品砖中可浸出重金属浓度及控制限值

    Table  5.   Concentrations and control limits of leachable heavy metals in fired bricks μg/L 

    项目AsCdCrMnNiPbCu
    空白工况28.60.16.5213.77.96.012.3
    掺烧工况19.80.025.6180.86.73.912.6
    GB 30760—2014
    浸出限值
    100302001 0002003001 000
    下载: 导出CSV

    表  6  掺烧工况下成品砖力学性能

    Table  6.   Mechanical properties of fired bricks under blending condition

    项目掺烧
    工况
    GB/T 5101—2017
    标准值
    尺寸允许
    偏差/mm
    长度平均偏差 −1.5 $ \pm 2.0 $
    长度极差 2.5 $ \leqslant 6.0 $
    宽度平均偏差 −1.5 $ \pm 1.5 $
    宽度极差 1.0 $ \leqslant 5.0 $
    高度平均偏差 −0.8 $ \pm 1.5 $
    高度极差 2.0 $ \leqslant 4.0 $
    外观质量/mm 两条面高度差 1.5 $ \leqslant 2 $
    弯曲 1.3 $ \leqslant 2 $
    杂质凸出高度 1.9 $ \leqslant 2 $
    缺棱掉角的3个破环尺寸 0 $ > 5 $
    大面上宽度方向及其
    延伸至条面的长度
    26.3 $ \leqslant 30 $
    长度方向及其延伸至
    顶面的长度或条顶面上
    水平裂纹的长度
    28.9 $ \leqslant 50 $
    抗压强度/MPa 抗压强度平均值 20.67 $ \geqslant 20.0 $
    强度标准值 16.0 $ \geqslant 14.0 $
    放射性核素
    限量/(Bq/kg)
    内照射指数 0.3 $ \leqslant 1.0 $
    外照射指数 0.6 $ \leqslant 1.0 $
    下载: 导出CSV

    表  7  掺烧工况下重金属在烧结砖隧道窑中的分配率

    Table  7.   Distribution of heavy metals during co-processing in sintered brick tunnel kiln % 

    项目 As Cd Cr Mn Ni Pb Cu
    烟气 0.391 0.130 0.065 0.013 0.028 0.048 0.068
    脱硫滤饼 0.003 0.001 0.004 0.001 0.003 0.002 0.009
    成品砖 99.606 99.869 99.931 99.986 99.969 99.950 99.923
    下载: 导出CSV

    表  8  2种工况下重金属在砖窑中的浸出率

    Table  8.   Leaching rate of heavy metals in brick tunnel kiln under two conditions % 

    工况AsCdCrMnNiPbCu
    空白工况59.01.52.08.14.52.55.8
    掺烧工况40.00.31.64.93.51.45.4
    下载: 导出CSV
  • [1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2021-10-11]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670_wh.htm.
    [2] 李继宁, 魏源, 赵龙, 等.锑矿区土壤重金属生物可给性及人体健康风险评估[J]. 环境工程技术学报,2014,4(5):412-420.

    LI J N, WEI Y, ZHAO L, et al. Bioaccessibility and human health risk assessment of heavy metals in soils of antimony mine area[J]. Journal of Environmental Engineering Technology,2014,4(5):412-420.
    [3] POLETTINI A, POMI R, TRINCI L, et al. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives[J]. Chemosphere,2004,56(10):901-910. doi: 10.1016/j.chemosphere.2004.05.004
    [4] 周伟伦, 廖正家, 陈涛, 等.利用铁尾矿制备烧结砖的可行性及烧结固化机理[J]. 环境工程学报,2021,15(5):1670-1678.

    ZHOU J L, LIAO Z J, CHEN T, et al. Feasibility of using iron tailings to prepare sintering brick and sintering solidification mechanism[J]. Chinese Journal of Environmental Engineering,2021,15(5):1670-1678.
    [5] WEI Z A, ZHAO J K, WANG W S, et al. Utilizing gold mine tailings to produce sintered bricks[J]. Construction and Building Materials,2021,282:122655. doi: 10.1016/j.conbuildmat.2021.122655
    [6] 王晓明.尾矿烧结制砖研究和应用[J]. 中国资源综合利用,2021,39(9):72-75. doi: 10.3969/j.issn.1008-9500.2021.09.022

    WANG X M. Research and application of making bricks by sintering tailings[J]. China Resources Comprehensive Utilization,2021,39(9):72-75. doi: 10.3969/j.issn.1008-9500.2021.09.022
    [7] GOEL G, KATIYAR N K, KIRTHIKA S K, et al. Potential pathway for recycling of the paper mill sludge compost for brick making[J]. Construction and Building Materials,2021,278:122384. doi: 10.1016/j.conbuildmat.2021.122384
    [8] 崔敬轩, 何捷, 聂卿, 等.河湖淤泥制备烧结砖的研究进展[J]. 中国建材科技,2020,29(5):37-41.

    CUI J X, HE J, NIE Q, et al. Research progress on preparation of sintered bricks from river and lake sludge[J]. China Building Materials Science and Technology,2020,29(5):37-41.
    [9] LEIVA C, ARENAS C, PECENO B, et al. A mechanical, leaching, and radiological assessment of fired bricks with a high content of fly ash[J]. Ceramics International,2018,44:13313-13319. doi: 10.1016/j.ceramint.2018.04.162
    [10] TAKI K, GAHLOT R, KUMAR M. Utilization of fly ash amended sewage sludge as brick for sustainable building material with special emphasis on dimensional effect[J]. Journal of Cleaner Production,2020,275:123942. doi: 10.1016/j.jclepro.2020.123942
    [11] 张忠亮, 金容旭, 张雪梅, 等.利用海上油气田水基钻井废物制备烧结砖[J]. 环境工程学报,2021,15(9):3020-3028.

    ZHANG Z L, JIN R X, ZHANG X M, et al. Preparation of sintered brick from water-based drilling wastes in offshore oil and gas field[J]. Chinese Journal of Environmental Engineering,2021,15(9):3020-3028.
    [12] 王之超, 何洁, 张曼丽, 等.油基钻井岩屑固化体中多环芳烃释放特征[J]. 环境工程技术学报,2020,10(4):647-652.

    WANG Z C, HE J, ZHANG M L, et al. Release characteristics of PAHs in oil-based drilling cuttings solidified body[J]. Journal of Environmental Engineering Technology,2020,10(4):647-652.
    [13] LI C, WEN Q, HONG M, et al. Heavy metals leaching in bricks made from lead and zinc mine tailings with varied chemical components[J]. Construction and Building Materials,2017,134:443-451. doi: 10.1016/j.conbuildmat.2016.12.076
    [14] GHOSH I, GUHA S, BALASUBRAMANIAM R, et al. Leaching of metals from fresh and sintered red mud[J]. Journal of Hazardous Materials,2011,185(2/3):662-668.
    [15] CHEN S W, CHENG P C, TU Y T, et al. Variance in heavy metal leachability of Pb-, Ni-, and Cr-contaminated soils through red brick sintering procedure[J]. Environ Monit Assess,2019,191(4):253. doi: 10.1007/s10661-019-7372-9
    [16] 田梦莹, 杨玉飞, 黄启飞, 等.烧结砖中重金属释放特性研究[J]. 安全与环境学报,2015,15(6):191-195.

    TIAN M Y, YANG Y F, HUANG Q F, et al. On the heavy-metal releasing features in sintered bricks[J]. Journal of Safety and Environment,2015,15(6):191-195.
    [17] 刘敬勇, 孙水裕, 陈涛.固体添加剂对污泥焚烧过程中重金属迁移行为的影响[J]. 环境科学,2013,34(3):1166-1173.

    LIU J Y, SUN S Y, CHEN T. Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge[J]. Environmental Science,2013,34(3):1166-1173.
    [18] 杨柳阳. 重金属在砖窑协同处置过程中的挥发特征及使用过程中释放限值探究[D]. 南京: 南京工业大学, 2021.
    [19] 徐厚林.烧结砖化学成分及物理性能简述[J]. 砖瓦世界,2015(4):33-34.
    [20] ARENA U, GREGORIO F. Element partitioning in combustion-and gasification-based waste-to-energy units[J]. Waste Management,2013,33:1142-1150. doi: 10.1016/j.wasman.2013.01.035
    [21] 崔敬轩, 闫大海, 李丽, 等.水泥窑共处置过程中砷挥发特性及动力学研究[J]. 中国环境科学,2014,34(6):1498-1504.

    CUI J X, YAN D H, LI L, et al. Volatilization characteristics and dynamics research on arsenic during co-processing in cement kilns[J]. China Environmental Science,2014,34(6):1498-1504.
    [22] CONG J, YAN D H, LI L, et al. Volatilization of heavy metals (As, Pb, Cd) during co-processing in cement kilns[J]. Environmental Engineering Science,2015,32(5):425-435. doi: 10.1089/ees.2014.0175
    [23] 崔敬轩, 闫大海, 李丽, 等.水泥窑协同处置过程中Pb、Cd的挥发特性[J]. 环境工程学报,2013,7(12):5001-5006.

    CUI J X, YAN D H, LI L, et al. Volatilizing characteristic of lead and cadmium during co-processing in cement kiln[J]. Chinese Journal of Environmental Engineering,2013,7(12):5001-5006.
    [24] 丛璟, 闫大海, 李丽, 等.水泥窑共处置过程中水泥生料对Pb与Cd的吸附/冷凝特性[J]. 环境科学研究,2015,28(4):575-581.

    CONG J, YAN D H, LI L, et al. Research on condensation and absorption characteristics of cement raw meal for Pb and Cd during co-processing in cement kiln[J]. Research of Environmental science,2015,28(4):575-581.
    [25] XU G R, ZOU L J, LI G B. Stabilization of heavy metals in sludge ceramsite[J]. Water Research,2010,44:2930-2938. doi: 10.1016/j.watres.2010.02.014
    [26] WANG G W, NING X N, LU X W, et al. Effect of sintering temperature on mineral composition and heavy metals mobility in tailings bricks[J]. Waste Management,2019,93:112-121. doi: 10.1016/j.wasman.2019.04.001
    [27] TANG Y, LEE P, SHIH K. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization[J]. Environmental Science & Technology,2013,47(15):8609-8615.
    [28] TANG Y, SHIH K, WANG Y, et al. Zinc stabilization efficiency of aluminate spinel structure and its leaching behavior[J]. Environmental Science & Technology,2011,45(24):10544-10550.
    [29] 杨子良, 岳波, 闫大海, 等.含砷废物资源化产品中砷的浸出特性与环境风险分析[J]. 环境科学研究,2010,23(3):293-297. doi: 10.13198/j.res.2010.03.47.yangzl.007

    YANG Z L, YUE B, YAN D H, et al. Leaching characteristic and environmental risk analysis of arsenic in resource recovery products using arsenic-containing waste[J]. Research of Environmental Sciences,2010,23(3):293-297. ⊗ doi: 10.13198/j.res.2010.03.47.yangzl.007
  • 加载中
图(1) / 表(8)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  160
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26

目录

    /

    返回文章
    返回