留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

污染场地土壤重金属污染空间特征分析

耿治鹏 宋颉 王春林 蒋卫国 陈征

耿治鹏,宋颉,王春林,等.污染场地土壤重金属污染空间特征分析:以某搬迁电镀厂为例[J].环境工程技术学报,2023,13(1):295-302 doi: 10.12153/j.issn.1674-991X.20210617
引用本文: 耿治鹏,宋颉,王春林,等.污染场地土壤重金属污染空间特征分析:以某搬迁电镀厂为例[J].环境工程技术学报,2023,13(1):295-302 doi: 10.12153/j.issn.1674-991X.20210617
GENG Z P,SONG J,WANG C L,et al.Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J].Journal of Environmental Engineering Technology,2023,13(1):295-302 doi: 10.12153/j.issn.1674-991X.20210617
Citation: GENG Z P,SONG J,WANG C L,et al.Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example[J].Journal of Environmental Engineering Technology,2023,13(1):295-302 doi: 10.12153/j.issn.1674-991X.20210617

污染场地土壤重金属污染空间特征分析—以某搬迁电镀厂为例

doi: 10.12153/j.issn.1674-991X.20210617
基金项目: 国家重点研发计划项目(2020YFC1807403)
详细信息
    作者简介:

    耿治鹏(1997—),男,硕士研究生,主要从事生态遥感研究,202121051181@mail.bnu.edu.cn

    通讯作者:

    蒋卫国(1976—),男,教授,博士,研究方向为湿地生态水文遥感监测与洪水灾害监测评价,jiangweiguo@bnu.edu.cn

  • 中图分类号: X53

Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example

  • 摘要:

    以某搬迁电镀厂为例,根据污染场地调查报告内的采样数据,按照相关的污染场地污染标准筛选出污染的重金属类别,利用反距离权重法分析重金属在研究区的分布特征,运用莫兰指数进行空间关联分析,运用半变异函数分析重金属污染整体的空间结构和趋势,以探究污染场地的重金属污染空间特征。结果表明:研究区土壤中Ni、Cr、Zn、Cu浓度超过土壤背景值,其最高浓度采样点的风险标准限值倍数分别为9.55、1.35、5.94、10.67;Cu、Zn的浓度在场地范围内东西、南北方向上均呈倒U型趋势,中间高四周低;Ni、Cr浓度在空间分布特征较为相似,高值区域位于场地的东北边界处;4种超标重金属的空间特征差异较大,但均存在聚集特征。

     

  • 图  1  研究区采样点位

    Figure  1.  Sampling points in the study area

    图  2  重金属空间趋势面图像

    Figure  2.  Spatial trend analysis image of heavy metals

    图  3  场地区域超标重金属浓度的空间插值分布

    Figure  3.  Spatial interpolation distribution image of over-standard heavy metals in the site area

    图  4  超标重金属半变异函数云分析图

    Figure  4.  Semivariograms cloud analysis diagram of four over-standard heavy metals

    图  5  超标重金属局部自相关图

    Figure  5.  Local autocorrelation diagram of over-standard heavy metals

    表  1  土壤重金属浓度统计

    Table  1.   Statistics of heavy metal contents in soil

    重金属最小值/
    (mg/kg)
    最大值/
    (mg/kg)
    平均值/
    (mg/kg)
    标准差/
    (mg/kg)
    变异系
    数/%
    当地背景
    [17]/(mg/kg)
    标准限值[24-26]/
    (mg/kg)
    最大超
    标倍数
    样本超
    标率/%
    Cr3.231 350100.10139.741.40109.101 0001.350.61
    Cu7.002 970314.96527.121.6756.505005.9417.58
    Ni5.001 910171.92244.661.4239.502009.5528.06
    Zn7.517 470326.37764.182.34180.5070010.679.70
    Hg0.020.260.070.050.730.282000
    Pb9.9373.8033.0416.230.4968.8060000
    Cd01.890.240.291.220.452000
    Ag06.901.301.250.960.403900
    下载: 导出CSV

    表  2  超标重金属之间的相关系数

    Table  2.   Correlation coefficient of over-standard heavy metals

    重金属NiCrCuZn
    Ni1.00
    Cr0.681.00
    Cu0.560.451.00
    Zn0.020.320.031.00
    下载: 导出CSV

    表  3  超标重金属的空间自相关结果

    Table  3.   Spatial autocorrelation results of four over-standard heavy metals

    参数NiCuZnCr
    I0.036−0.065−0.0530.310
    Z0.628−0.294−0.2583.577
    下载: 导出CSV
  • [1] 张施阳.基于GIS的上海市不同功能区土壤重金属污染评价及健康风险评估[J]. 环境工程技术学报,2022,12(4):1226-1236.

    ZHANG S Y. Assessment of soil heavy metal pollution and health risk in different functional areas of Shanghai City based on GIS[J]. Journal of Environmental Engineering Technology,2022,12(4):1226-1236.
    [2] ZHUANG W, ZHOU F X. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin,2021,164:112002. doi: 10.1016/j.marpolbul.2021.112002
    [3] 陈洁, 施维林, 张一梅, 等.电镀厂遗留场地污染分析及健康风险空间分布评价[J]. 环境工程,2018,36(4):153-159.

    CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site[J]. Environmental Engineering,2018,36(4):153-159.
    [4] MI H C, YI L S, WU Q, et al. Preparation and optimization of a low-cost adsorbent for heavy metal ions from red mud using fraction factorial design and Box-Behnken response methodology[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,627:127198. doi: 10.1016/j.colsurfa.2021.127198
    [5] 苏智杰, 赵中秋, 祝培甜, 等.X市土壤重金属污染空间特性分析与风险评价[J]. 环境污染与防治,2019,41(6):714-719.

    SU Z J, ZHAO Z Q, ZHU P T, et al. Spatial characteristics and risk assessment of heavy metal pollution in soil of X City[J]. Environmental Pollution & Control,2019,41(6):714-719.
    [6] XIAO H, SHAHAB A, XI B D, et al. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution,2021,269:116189. doi: 10.1016/j.envpol.2020.116189
    [7] LIU D X, MA J H, SUN Y L, et al. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China[J]. CATENA,2016,139:53-60. doi: 10.1016/j.catena.2015.11.004
    [8] 谢桂生.耕地土壤重金属污染综合防治分析[J]. 环境与发展,2019,31(8):46.

    XIE G S. Comprehensive prevention and control of heavy metal pollution in cultivated soil[J]. Environment and Development,2019,31(8):46.
    [9] MAPANDA F, MANGWAYANA E N, NYAMANGARA J, et al. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agriculture, Ecosystems & Environment,2005,107(2/3):151-165.
    [10] BENHADDYA M L, HADJEL M. Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria[J]. Environmental Earth Sciences,2014,71(3):1473-1486. doi: 10.1007/s12665-013-2552-3
    [11] LOPES G, COSTA E T S, PENIDO E S, et al. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil[J]. Environmental Science and Pollution Research International,2015,22(17):13442-13452. doi: 10.1007/s11356-015-4613-5
    [12] 任加国, 王彬, 师华定, 等.沱江上源支流土壤重金属污染空间相关性及变异解析[J]. 农业环境科学学报,2020,39(3):530-541. doi: 10.11654/jaes.2019-1049

    REN J G, WANG B, SHI H D, et al. Spatial correlation and variation analysis of soil heavy metals contamination in upper source tributary of Tuojiang River, China[J]. Journal of Agro-Environment Science,2020,39(3):530-541. doi: 10.11654/jaes.2019-1049
    [13] 路一帆, 陆胤, 蔡慧, 等.铅蓄电池厂遗留场地重金属污染分析及健康风险评价[J]. 环境工程,2022,40(1):135-140.

    LU Y F, LU Y, CAI H, et al. Pollution analysis and health risk assessment of heavy metals in field left by a lead-acid battery factory[J]. Environmental Engineering,2022,40(1):135-140.
    [14] 刘丽丽, 邓一荣, 廖高明, 等.华南某污染场地土壤重金属污染健康风险评估与来源解析[J]. 环境污染与防治,2021,43(7):875-879.

    LIU L L, DENG Y R, LIAO G M, et al. Health risk assessment and source analysis of heavy metal pollution in soil of a contaminated site in South China[J]. Environmental Pollution & Control,2021,43(7):875-879.
    [15] 王梅霞, 冯文兰.土壤砷空间分布特征及其与地理要素的关联分析[J]. 环境科学与技术,2019,42(9):106-111.

    WANG M X, FENG W L. Spatial variation of soil arsenic and correlation analysis with geographical factors[J]. Environmental Science & Technology,2019,42(9):106-111.
    [16] 王春光, 刘军省, 殷显阳, 等.基于IDW的铜陵地区土壤重金属空间分析及污染评价[J]. 安全与环境学报,2018,18(5):1989-1996.

    WANG C G, LIU J X, YIN X Y, et al. Spatial analysis and pollution assessment of heavy metals in the soils of Tongling urban area based on IDW[J]. Journal of Safety and Environment,2018,18(5):1989-1996.
    [17] D市电镀工业区场地环境调查和风险评估报告[M]. 广州: 广东省生态环境技术研究所, 2016.
    [18] 朱凯旋, 张飞杰, 周燕, 等.污染场地调查中离散采样的局限性分析[J]. 环境科学研究,2021,34(6):1441-1448.

    ZHU K X, ZHANG F J, ZHOU Y, et al. Limitation analysis of discrete sampling of contaminated site investigations[J]. Research of Environmental Sciences,2021,34(6):1441-1448.
    [19] 张文博. 基于GIS的渭河流域西咸段土壤重金属空间分析与污染评价[D]. 西安: 陕西师范大学, 2014.
    [20] XU X D, CAO Z M, ZHANG Z X, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of the Bohai and Yellow Seas[J]. Marine Pollution Bulletin,2016,110(1):596-602. doi: 10.1016/j.marpolbul.2016.05.079
    [21] 杨少斌, 于鑫, 孙向阳, 等.北京城区绿地土壤重金属污染评价与空间分析[J]. 生态环境学报,2018,27(5):933-941.

    YANG S B, YU X, SUN X Y, et al. Pollution assessment and spatial structure analysis of heavy metals of greenbelt soil in Beijing urban area[J]. Ecology and Environmental Sciences,2018,27(5):933-941.
    [22] WANG K Y, SHEN Y T, ZHANG S C, et al. Application of spatial analysis and multivariate analysis techniques in distribution and source study of polycyclic aromatic hydrocarbons in the topsoil of Beijing, China[J]. Environmental Geology,2009,56(6):1041-1050. doi: 10.1007/s00254-008-1204-5
    [23] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 2版. 北京: 科学出版社, 2012.
    [24] 国家环境保护总局.展览会用地土壤环境质量评价标准(暂行): HJ 350—2007[S]北京: 中国环境科学社, 2007.
    [25] 北京市质量监督局. 场地土壤环境风险评价筛选值: DB11/T 811—2011[S]. 北京: 环境保护局, 2011.
    [26] 广东省质量监督局. 土壤重金属风险评价筛选值珠江三角洲: DB44/ T 1415—2014[S]. 广州: 广东省质量监督局, 2014
    [27] 冯娟. 土壤盐渍化遥感建模尺度效应分析[D]. 乌鲁木齐: 新疆大学, 2018.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  212
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27

目录

    /

    返回文章
    返回