Spatial characteristics of soil heavy metal pollution in polluted sites: taking a relocated electroplating factory as an example
-
摘要:
以某搬迁电镀厂为例,根据污染场地调查报告内的采样数据,按照相关的污染场地污染标准筛选出污染的重金属类别,利用反距离权重法分析重金属在研究区的分布特征,运用莫兰指数进行空间关联分析,运用半变异函数分析重金属污染整体的空间结构和趋势,以探究污染场地的重金属污染空间特征。结果表明:研究区土壤中Ni、Cr、Zn、Cu浓度超过土壤背景值,其最高浓度采样点的风险标准限值倍数分别为9.55、1.35、5.94、10.67;Cu、Zn的浓度在场地范围内东西、南北方向上均呈倒U型趋势,中间高四周低;Ni、Cr浓度在空间分布特征较为相似,高值区域位于场地的东北边界处;4种超标重金属的空间特征差异较大,但均存在聚集特征。
Abstract:Taking a relocated electroplating plant as an example and based on the sampling data in the survey report of the polluted site, the categories of polluting heavy metals were screened according to the Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural Land (Trial) (GB 15618-2018). The inverse distance weighting (IDW) method was used to analyze the distribution characteristics of heavy metals in the study area, Moran index was used for spatial correlation analysis, and the semivariogram was used to analyze the overall spatial structure and trend of heavy metal pollution, so as to explore the spatial characteristics of heavy metal pollution in the polluted site. The results showed that the concentrations of Ni, Cr, Zn and Cu in the soil in the study area exceeded the soil background value, and the risk screening value multiples of the sampling points with the highest concentration were 9.55, 1.35, 5.94 and 10.67, respectively. The concentrations of Cu and Zn showed an inverted U-shaped trend in the east-west and north-south directions within the site, high in the middle and low around. The spatial distribution characteristics of Ni and Cr concentrations are similar, and the high value area is located at the northeast boundary of the site. The spatial characteristics of the four over-standard heavy metals were quite different, but they all showed aggregation characteristics.
-
Key words:
- soil heavy metals /
- spatial analysis /
- spatial trend /
- semivariogram cloud /
- spatial autocorrelation
-
表 1 土壤重金属浓度统计
Table 1. Statistics of heavy metal contents in soil
重金属 最小值/
(mg/kg)最大值/
(mg/kg)平均值/
(mg/kg)标准差/
(mg/kg)变异系
数/%当地背景
值[17]/(mg/kg)标准限值[24-26]/
(mg/kg)最大超
标倍数样本超
标率/%Cr 3.23 1 350 100.10 139.74 1.40 109.10 1 000 1.35 0.61 Cu 7.00 2 970 314.96 527.12 1.67 56.50 500 5.94 17.58 Ni 5.00 1 910 171.92 244.66 1.42 39.50 200 9.55 28.06 Zn 7.51 7 470 326.37 764.18 2.34 180.50 700 10.67 9.70 Hg 0.02 0.26 0.07 0.05 0.73 0.28 20 0 0 Pb 9.93 73.80 33.04 16.23 0.49 68.80 600 0 0 Cd 0 1.89 0.24 0.29 1.22 0.45 20 0 0 Ag 0 6.90 1.30 1.25 0.96 0.40 39 0 0 表 2 超标重金属之间的相关系数
Table 2. Correlation coefficient of over-standard heavy metals
重金属 Ni Cr Cu Zn Ni 1.00 Cr 0.68 1.00 Cu 0.56 0.45 1.00 Zn 0.02 0.32 0.03 1.00 表 3 超标重金属的空间自相关结果
Table 3. Spatial autocorrelation results of four over-standard heavy metals
参数 Ni Cu Zn Cr I 0.036 −0.065 −0.053 0.310 Z 0.628 −0.294 −0.258 3.577 -
[1] 张施阳.基于GIS的上海市不同功能区土壤重金属污染评价及健康风险评估[J]. 环境工程技术学报,2022,12(4):1226-1236.ZHANG S Y. Assessment of soil heavy metal pollution and health risk in different functional areas of Shanghai City based on GIS[J]. Journal of Environmental Engineering Technology,2022,12(4):1226-1236. [2] ZHUANG W, ZHOU F X. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea[J]. Marine Pollution Bulletin,2021,164:112002. doi: 10.1016/j.marpolbul.2021.112002 [3] 陈洁, 施维林, 张一梅, 等.电镀厂遗留场地污染分析及健康风险空间分布评价[J]. 环境工程,2018,36(4):153-159.CHEN J, SHI W L, ZHANG Y M, et al. Pollution analysis and spatial distribution of health risk in electroplating abandoned site[J]. Environmental Engineering,2018,36(4):153-159. [4] MI H C, YI L S, WU Q, et al. Preparation and optimization of a low-cost adsorbent for heavy metal ions from red mud using fraction factorial design and Box-Behnken response methodology[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,627:127198. doi: 10.1016/j.colsurfa.2021.127198 [5] 苏智杰, 赵中秋, 祝培甜, 等.X市土壤重金属污染空间特性分析与风险评价[J]. 环境污染与防治,2019,41(6):714-719.SU Z J, ZHAO Z Q, ZHU P T, et al. Spatial characteristics and risk assessment of heavy metal pollution in soil of X City[J]. Environmental Pollution & Control,2019,41(6):714-719. [6] XIAO H, SHAHAB A, XI B D, et al. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China[J]. Environmental Pollution,2021,269:116189. doi: 10.1016/j.envpol.2020.116189 [7] LIU D X, MA J H, SUN Y L, et al. Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China[J]. CATENA,2016,139:53-60. doi: 10.1016/j.catena.2015.11.004 [8] 谢桂生.耕地土壤重金属污染综合防治分析[J]. 环境与发展,2019,31(8):46.XIE G S. Comprehensive prevention and control of heavy metal pollution in cultivated soil[J]. Environment and Development,2019,31(8):46. [9] MAPANDA F, MANGWAYANA E N, NYAMANGARA J, et al. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agriculture, Ecosystems & Environment,2005,107(2/3):151-165. [10] BENHADDYA M L, HADJEL M. Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria[J]. Environmental Earth Sciences,2014,71(3):1473-1486. doi: 10.1007/s12665-013-2552-3 [11] LOPES G, COSTA E T S, PENIDO E S, et al. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil[J]. Environmental Science and Pollution Research International,2015,22(17):13442-13452. doi: 10.1007/s11356-015-4613-5 [12] 任加国, 王彬, 师华定, 等.沱江上源支流土壤重金属污染空间相关性及变异解析[J]. 农业环境科学学报,2020,39(3):530-541. doi: 10.11654/jaes.2019-1049REN J G, WANG B, SHI H D, et al. Spatial correlation and variation analysis of soil heavy metals contamination in upper source tributary of Tuojiang River, China[J]. Journal of Agro-Environment Science,2020,39(3):530-541. doi: 10.11654/jaes.2019-1049 [13] 路一帆, 陆胤, 蔡慧, 等.铅蓄电池厂遗留场地重金属污染分析及健康风险评价[J]. 环境工程,2022,40(1):135-140.LU Y F, LU Y, CAI H, et al. Pollution analysis and health risk assessment of heavy metals in field left by a lead-acid battery factory[J]. Environmental Engineering,2022,40(1):135-140. [14] 刘丽丽, 邓一荣, 廖高明, 等.华南某污染场地土壤重金属污染健康风险评估与来源解析[J]. 环境污染与防治,2021,43(7):875-879.LIU L L, DENG Y R, LIAO G M, et al. Health risk assessment and source analysis of heavy metal pollution in soil of a contaminated site in South China[J]. Environmental Pollution & Control,2021,43(7):875-879. [15] 王梅霞, 冯文兰.土壤砷空间分布特征及其与地理要素的关联分析[J]. 环境科学与技术,2019,42(9):106-111.WANG M X, FENG W L. Spatial variation of soil arsenic and correlation analysis with geographical factors[J]. Environmental Science & Technology,2019,42(9):106-111. [16] 王春光, 刘军省, 殷显阳, 等.基于IDW的铜陵地区土壤重金属空间分析及污染评价[J]. 安全与环境学报,2018,18(5):1989-1996.WANG C G, LIU J X, YIN X Y, et al. Spatial analysis and pollution assessment of heavy metals in the soils of Tongling urban area based on IDW[J]. Journal of Safety and Environment,2018,18(5):1989-1996. [17] D市电镀工业区场地环境调查和风险评估报告[M]. 广州: 广东省生态环境技术研究所, 2016. [18] 朱凯旋, 张飞杰, 周燕, 等.污染场地调查中离散采样的局限性分析[J]. 环境科学研究,2021,34(6):1441-1448.ZHU K X, ZHANG F J, ZHOU Y, et al. Limitation analysis of discrete sampling of contaminated site investigations[J]. Research of Environmental Sciences,2021,34(6):1441-1448. [19] 张文博. 基于GIS的渭河流域西咸段土壤重金属空间分析与污染评价[D]. 西安: 陕西师范大学, 2014. [20] XU X D, CAO Z M, ZHANG Z X, et al. Spatial distribution and pollution assessment of heavy metals in the surface sediments of the Bohai and Yellow Seas[J]. Marine Pollution Bulletin,2016,110(1):596-602. doi: 10.1016/j.marpolbul.2016.05.079 [21] 杨少斌, 于鑫, 孙向阳, 等.北京城区绿地土壤重金属污染评价与空间分析[J]. 生态环境学报,2018,27(5):933-941.YANG S B, YU X, SUN X Y, et al. Pollution assessment and spatial structure analysis of heavy metals of greenbelt soil in Beijing urban area[J]. Ecology and Environmental Sciences,2018,27(5):933-941. [22] WANG K Y, SHEN Y T, ZHANG S C, et al. Application of spatial analysis and multivariate analysis techniques in distribution and source study of polycyclic aromatic hydrocarbons in the topsoil of Beijing, China[J]. Environmental Geology,2009,56(6):1041-1050. doi: 10.1007/s00254-008-1204-5 [23] 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 2版. 北京: 科学出版社, 2012. [24] 国家环境保护总局.展览会用地土壤环境质量评价标准(暂行): HJ 350—2007[S]北京: 中国环境科学社, 2007. [25] 北京市质量监督局. 场地土壤环境风险评价筛选值: DB11/T 811—2011[S]. 北京: 环境保护局, 2011. [26] 广东省质量监督局. 土壤重金属风险评价筛选值珠江三角洲: DB44/ T 1415—2014[S]. 广州: 广东省质量监督局, 2014 [27] 冯娟. 土壤盐渍化遥感建模尺度效应分析[D]. 乌鲁木齐: 新疆大学, 2018.