留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微涡流絮凝工艺处理高浊水的数值模拟与响应面优化试验

徐琪珂 戴红玲 赵国强 胡锋平

徐琪珂,戴红玲,赵国强,等.微涡流絮凝工艺处理高浊水的数值模拟与响应面优化试验[J].环境工程技术学报,2022,12(1):62-69 doi: 10.12153/j.issn.1674-991X.20210620
引用本文: 徐琪珂,戴红玲,赵国强,等.微涡流絮凝工艺处理高浊水的数值模拟与响应面优化试验[J].环境工程技术学报,2022,12(1):62-69 doi: 10.12153/j.issn.1674-991X.20210620
XU Q K,DAI H L,ZHAO G Q,et al.Numerical simulation and response surface optimization of micro-vortex flocculation process for high turbidity water treatment[J].Journal of Environmental Engineering Technology,2022,12(1):62-69 doi: 10.12153/j.issn.1674-991X.20210620
Citation: XU Q K,DAI H L,ZHAO G Q,et al.Numerical simulation and response surface optimization of micro-vortex flocculation process for high turbidity water treatment[J].Journal of Environmental Engineering Technology,2022,12(1):62-69 doi: 10.12153/j.issn.1674-991X.20210620

微涡流絮凝工艺处理高浊水的数值模拟与响应面优化试验

doi: 10.12153/j.issn.1674-991X.20210620
基金项目: 江西省自然科学基金项目(20192BAB206038);国家自然科学基金项目(61872141);江西省省级重点实验室项目(20192BCD40013);江西省教育厅科技计划项目(GJJ190298)
详细信息
    作者简介:

    徐琪珂(1996—),女,硕士研究生,主要从事给水、废水物化处理理论与技术研究,398023810@qq.com

    通讯作者:

    戴红玲(1980—),女,副教授,主要从事给水、废水物化处理理论与技术研究, dhl781228@126.com

  • 中图分类号: X524

Numerical simulation and response surface optimization of micro-vortex flocculation process for high turbidity water treatment

  • 摘要: 针对微涡流絮凝工艺处理高浊水开展连续性工艺优化研究,采用计算流体力学(CFD)数值模拟软件,探究不同流量(流速)下絮凝区液流状态变化,确定最佳絮凝时间;应用响应面Box-Behnken设计方法,研究流量、混凝剂投加量与回流比及其交互作用对微涡流絮凝工艺处理高浊水效果的影响。结果表明:随着流量(流速)增大,絮凝区内湍动能、有效能耗、速度梯度及其变化率逐渐增大,但流速过大会导致絮凝时间不足,最佳流量为4.2~7.0 m3/h(最佳流速为0.41~0.67 m/s);回流比是微涡流絮凝工艺的极显著影响因素,其次是混凝剂投加量,最后是流量,三者间具有协同作用;微涡流絮凝工艺处理高浊水的最佳工艺参数,流量为5.9 m3/h,混凝剂投加量为34.8 mg/L,回流比为0.8,浊度、UV254、CODMn去除率分别可达99.23%、95.03%、71.42%。优化后的微涡流絮凝工艺为高浊水处理提供了新途径,具有一定的应用前景。

     

  • 图  1  微涡流澄清池

    Figure  1.  Micro-vortex clarifier

    图  2  涡流反应器

    Figure  2.  vortex reactor

    图  3  涡流澄清池模型

    Figure  3.  Vortex clarifier model

    图  4  不同流量(流速)下絮凝反应区速度矢量

    Figure  4.  Velocity diagram of flocculation reaction zone under different flow rates (flow velocities)

    图  5  不同流量(流速)下涡流澄清池湍动能

    Figure  5.  Cloud chart of turbulent kinetic energy in vortex clarifier under different flow rates (flow velocities)

    图  6  不同流量(流速)下涡流澄清池有效能耗

    Figure  6.  Cloud chart of effective energy consumption in vortex clarifier under different flow rates (flow velocities)

    图  7  不同流量(流速)下涡流澄清池絮凝区湍动能、有效能耗和G的变化曲线

    Figure  7.  Variation curves of turbulent energy, effective energy consumption and G-value in the flocculation zone of vortex clarifiers under different flow rates (flow velocities)

    图  8  各因素对浊度、UV254、CODMn去除率的交互作用响应面

    Figure  8.  Response surface diagram of the interaction effect of factors on turbidity, UV254, CODMn removal rate

    图  9  最优工况下浊度、UV254、CODMn的去除率

    Figure  9.  Removal rate of turbidity, UV254, CODMn under the optimal conditions

    表  1  配水水质

    Table  1.   Distributed water quality

    水温/℃ pH 浊度/NTU CODMn/(mg/L) UV254/cm−1
    15.3~21.8 6.2~7.5 195~213 7.8~12.5 0.256~0.282
    下载: 导出CSV

    表  2  Fluent数值模拟工况的进口参数

    Table  2.   Inlet parameters of Fluent numerical simulation conditions

    流量/(m3/h) 絮凝时间/min 进口流速/(m/s) 雷诺数 湍流强度/%
    4 25.4 0.39 7 765.64 1.87
    6 17 0.59 11 648.46 1.97
    8 12.7 0.79 15 531.29 2.04
    下载: 导出CSV

    表  3  评价指标

    Table  3.   Result evaluation indicators

    雷诺数
    湍流强度/% 湍动能/
    (m2/s2)
    有效能耗/
    (m2/s3)
    涡旋速度
    梯度/s−1
    ${\rm{R} }{ {\text{e} }_{{\rm{DH}}} } = \dfrac{ {\rho \nu d} }{\mu } = \dfrac{ {\nu d} }{\upsilon }$ $I = 0.16{{ { {\rm{Re} } } _{ {\rm{DH} } } }^{ - \frac{1}{8} } }$ $k = \dfrac{3}{2}{({\mu _{{\rm{avg}}} }I)^2}$ $\varepsilon = {C\mu }^{^{\frac{3}{4} } }\dfrac{ { {k^{\frac{3}{2} } } }}{l}$ $G = \sqrt {\dfrac{ {\rho \varepsilon } }{\mu } }$
    下载: 导出CSV

    表  4  边界条件和求解方法

    Table  4.   Boundary conditions and algorithm

    类别 结构参数求解设置
    进口边界 流速进口(velocity inlet)、湍流强度、
    水力直径
    出口边界 自由出流(outflow)
    壁面边界 标准壁面函数
    自由面边界 对称边界、刚盖定律
    求解方法 SIMPLE格式求解,收敛初始值设置为10−5
    标准k-ε湍流模型
    下载: 导出CSV

    表  5  高浊水中试试验响应面分析因素与水平

    Table  5.   Response surface analysis factors and levels for high turbidity water pilot test

    水平 流量/(m3/h) 混凝剂投加量/(mg/L) 回流比
    −1 4 15 0.5
    0 6 30 1.0
    1 8 45 1.5
    下载: 导出CSV

    表  6  优化试验设计及结果

    Table  6.   Optimization of experimental design and analysis of results

    序号 X1/(m3/h) X2/(mg/L) X3 Y1/% Y2/% Y3/%
    1 8 20 1.0 92.26 75.17 42.44
    2 6 25 1.0 97.55 89.44 65.55
    3 8 30 1.0 98.85 93.72 68.41
    4 6 20 1.5 89.81 70.03 38.12
    5 6 30 0.5 90.56 73.48 41.98
    6 4 20 1.0 93.09 76.30 50.34
    7 8 25 0.5 99.32 93.86 68.95
    8 6 25 1.0 94.77 84.94 61.18
    9 6 20 0.5 98.59 93.63 67.20
    10 6 25 1.0 95.03 86.78 62.10
    11 6 25 1.0 90.94 74.25 41.98
    12 4 25 0.5 93.62 83.68 51.15
    13 4 25 1.5 99.44 94.84 69.26
    14 6 25 1.0 99.82 96.12 69.36
    15 4 30 1.0 95.50 86.93 63.71
    16 6 30 1.5 97.88 89.74 66.10
    17 8 25 1.5 94.77 86.39 61.31
    下载: 导出CSV

    表  7  浊度、CODMn和UV254去除率回归方程显著性检验

    Table  7.   Significance test of regression equation of turbidity, CODMn and UV254 removal rate

    模型 均值 变异
    系数
    相关系
    数(R2
    信噪比 校正后相关
    系数( $R_{{\rm{adj}}}^2$)
    失拟项 显著性
    Y1 0.95 1.14 0.953 3 11.849 0.893 2 0.017 显著
    Y2 0.85 2.94 0.961 7 12.492 0.912 5 0.11 显著
    Y3 0.58 7.17 0.939 6 9.783 0.861 9 0.19 显著
    下载: 导出CSV
  • [1] HOU C Y, SONG J E, YAN J G, et al. Growth indicator response of Zostera japonica under different salinity and turbidity stresses in the Yellow River Estuary, China[J]. Marine Geology,2020,424:106169. doi: 10.1016/j.margeo.2020.106169
    [2] SUN Y J, ZHU C Y, SUN W Q, et al. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water[J]. Carbohydrate Polymers,2017,164:222-232. doi: 10.1016/j.carbpol.2017.02.010
    [3] 陈永平, 罗雯, 许春阳, 等.高浓度黏性泥沙絮团微观结构及其对沉降特性的影响[J]. 泥沙研究,2020,45(6):8-14.

    CHEN Y P, LUO W, XU C Y, et al. Microstructure of cohesive sediment flocs with high concentration and its influence on the deposition characteristics[J]. Journal of Sediment Research,2020,45(6):8-14.
    [4] 祝苑, 潘丁瑞, 汪艳, 等.新型助凝剂海藻酸钠的助凝效能及作用机制研究[J]. 环境工程技术学报,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150

    ZHU Y, PAN D R, WANG Y, et al. Study on coagulation aid efficiency and mechanism of new coagulant sodium alginate[J]. Journal of Environmental Engineering Technology,2019,9(6):680-684. doi: 10.12153/j.issn.1674-991X.2019.05.150
    [5] 王艺, 戴红玲, 周政, 等.微涡流絮凝工艺处理低温低浊微污染水的优化[J]. 中国给水排水,2019,35(23):41-47.

    WANG Y, DAI H L, ZHOU Z, et al. Optimization of micro Vortex flocculation process for treatment of low temperature and low turbidity micro-polluted water[J]. China Water & Wastewater,2019,35(23):41-47.
    [6] DAI H L, QIU Z M, HU F P, et al. Floc Performance parameters during water treatment in a micro-Vortex flocculation process determined by machine vision[J]. Environmental Technology,2019,40(23):3062-3071. doi: 10.1080/09593330.2018.1465127
    [7] 伏雨, 龙云, 肖波, 等.栅条絮凝池内部流场及颗粒运动状态模拟分析[J]. 环境工程,2021,39(4):25-29.

    FU Y, LONG Y, XIAO B, et al. Numerical simulation and analysis of flow field and particle motion in grid flocculation tank[J]. Environmental Engineering,2021,39(4):25-29.
    [8] 陈玉, 王军, 张培璇.穿孔旋流絮凝池加网格板的数值模拟[J]. 中国给水排水,2019,35(1):48-51.

    CHEN Y, WANG J, ZHANG P X. Numerical simulation of revolving flow flocculation tank with grid plates[J]. China Water & Wastewater,2019,35(1):48-51.
    [9] HE W P, LU W J, XU S R, et al. Comparative analysis on floc morphological evolution in cylindrical and square stirred-tank flocculating reactors with or without baffles: flocculation-test and CFD-aided investigations[J]. Chemical Engineering Research and Design,2019,147:278-291. doi: 10.1016/j.cherd.2019.05.012
    [10] GANJARE A V, PATWARDHAN A W. CFD simulations of single-phase flow in settling tanks: comparison of turbulence models[J]. Indian Chemical Engineer,2020,62(4):413-426. doi: 10.1080/00194506.2019.1677514
    [11] 王璐, 熊乐航, 张远, 等.LNG接收站冷排水的温降及余氯对水环境影响的数值模拟: 以湄洲湾东吴港区为例[J]. 环境工程技术学报,2021,11(5):962-969. doi: 10.12153/j.issn.1674-991X.20210007

    WANG L, XIONG L H, ZHANG Y, et al. Numerical simulation of temperature drop and residual chlorine effect on water environment in LNG receiving station: a case study in Dongwu port area of Meizhou Bay[J]. Journal of Environmental Engineering Technology,2021,11(5):962-969. doi: 10.12153/j.issn.1674-991X.20210007
    [12] 刘昶, 郑明霞, 孙源媛, 等.河道硬化对傍河地下水源补给结构及范围的影响[J]. 环境科学研究,2020,33(12):2820-2828.

    LIU C, ZHENG M X, SUN Y Y, et al. Effects of river hardening on recharging structure and range of riverside groundwater source field[J]. Research of Environmental Sciences,2020,33(12):2820-2828.
    [13] 王子凌, 信欣, 刘琴, 等.响应面法优化CANON工艺处理猪场沼液脱氮性能研究[J]. 环境科学研究,2020,33(10):2326-2334.

    WANG Z L, XIN X, LIU Q, et al. Optimization of denitrification performance of CANON process for treating anaerobic digester liquor of swine wastewater by response surface methodology[J]. Research of Environmental Sciences,2020,33(10):2326-2334.
    [14] RAHMANNEZHAD J, MIRBOZORGI S A. CFD analysis and RSM-based design optimization of novel grooved micromixers with obstructions[J]. International Journal of Heat and Mass Transfer,2019,140:483-497. doi: 10.1016/j.ijheatmasstransfer.2019.05.107
    [15] SABETI M B, HEJAZI M A, KARIMI A. Enhanced removal of nitrate and phosphate from wastewater by Chlorella vulgaris: multi-objective optimization and CFD simulation[J]. Chinese Journal of Chemical Engineering,2019,27(3):639-648. doi: 10.1016/j.cjche.2018.05.010
    [16] 林炜琛, 邵瑞朋, 王乔, 等.基于CFD和RSM的全效膜元件进水流道优化研究[J]. 膜科学与技术,2020,40(6):88-95.

    LIN W C, SHAO R P, WANG Q A, et al. Optimization of feed channel of full-effective membrane modules based on CFD simulation and RSM analysis[J]. Membrane Science and Technology,2020,40(6):88-95.
    [17] 赵国强, 戴红玲, 王艺, 等.低温低浊水絮凝工艺的数值模拟与响应面优化试验研究[J]. 水资源与水工程学报,2021,32(1):117-124.

    ZHAO G Q, DAI H L, WANG Y, et al. Numerical simulation and response surface optimization of low temperature and turbidity water flocculation process[J]. Journal of Water Resources and Water Engineering,2021,32(1):117-124.
    [18] TOOR U A, DUONG T T, KO S Y, et al. Optimization of Fenton process for removing TOC and color from swine wastewater using response surface method (RSM)[J]. Journal of Environmental Management,2021,279:111625. doi: 10.1016/j.jenvman.2020.111625
    [19] GHAFFARIRAAD M, GHANBARZADEH LAK M. Landfill leachate treatment through coagulation-flocculation with lime and bio-sorption by Walnut-shell[J]. Environmental Management,2021,68(2):226-239. doi: 10.1007/s00267-021-01489-4
    [20] TASCA A L, MANNARINO G, GORI R, et al. Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology[J]. Water Science and Technology,2020,82(11):2331-2343. □ doi: 10.2166/wst.2020.485
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  133
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28

目录

    /

    返回文章
    返回