留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能技术在水污染治理领域的研究进展

魏潇淑 高红杰 陈远航 常明

魏潇淑,高红杰,陈远航,等.人工智能技术在水污染治理领域的研究进展[J].环境工程技术学报,2022,12(6):2057-2063 doi: 10.12153/j.issn.1674-991X.20210638
引用本文: 魏潇淑,高红杰,陈远航,等.人工智能技术在水污染治理领域的研究进展[J].环境工程技术学报,2022,12(6):2057-2063 doi: 10.12153/j.issn.1674-991X.20210638
WEI X S,GAO H J,CHEN Y H,et al.Research progress of artificial intelligence technology in the field of water pollution control[J].Journal of Environmental Engineering Technology,2022,12(6):2057-2063 doi: 10.12153/j.issn.1674-991X.20210638
Citation: WEI X S,GAO H J,CHEN Y H,et al.Research progress of artificial intelligence technology in the field of water pollution control[J].Journal of Environmental Engineering Technology,2022,12(6):2057-2063 doi: 10.12153/j.issn.1674-991X.20210638

人工智能技术在水污染治理领域的研究进展

doi: 10.12153/j.issn.1674-991X.20210638
基金项目: 国家重点研发计划项目(2020YFC1807903);中央级公益性科研院所基本科研业务专项(2019YSKY-019)
详细信息
    作者简介:

    魏潇淑(1985—),女,助理研究员,博士,主要研究方向为水环境污染与控制,weixiaoshu36@163.com

    通讯作者:

    常明( 1981—),女,高级工程师,博士,主要从事流域水环境研究与治理,changming@craes.org.cn

  • 中图分类号: X522

Research progress of artificial intelligence technology in the field of water pollution control

  • 摘要:

    人工智能技术具有自学习、自适应和自组织的独特性能,目前已被广泛地应用于水环境污染、大气污染、固废处理、气候变化等环境领域,是环境监控和治理的良好助力手段。在水资源严重短缺的今天,水污染防治至关重要。传统的水污染治理与监管技术存在水污染监测滞后、污水优化控制成本较高、污染物去除效率预测精度较低等问题,人工智能的引入能够有效克服上述问题。因此,开发人工智能在水污染治理领域的应用具有重大意义。论述了人工智能技术的特点和分类,综述了其在水污染治理领域的研究现状和应用进展,以期为全面加强水污染治理提供科学参考。

     

  • 图  1  人工智能技术在水污染控制方面的应用模型分类[2]

    Figure  1.  Application model classification tree of AI technologies for water pollution control

    表  1  不同人工智能技术在水污染治理领域的特点与比较

    Table  1.   Characteristics and comparison of AI technologies in the field of water pollution control

    人工智能技术优点缺点适用性
    人工神经网络(ANNs) 由大量神经元组成,具有大规模并行,分布式存储和处理,自组织、自适应和学习能力,速度快,计算成本低,具有很强的容错性和鲁棒性 需要大量有代表性的数据,学习时间过长,可移植性较差 在模式识别、智能控制、组合优化、预测等领域得到成功应用,可应用于大气质量评价和预警系统、水处理软测量领域、水质预测预警、地表水污染特征识别、城市生活垃圾处理建模等[2]
    多层感知器神经网络(MLPNN) 具有并行处理和自学习能力,能以任意精度逼近非线性函数 收敛速度慢,存在过度拟合和局部最小值的风险 在模式识别、函数逼近、风险预测和控制等领域中有广泛的应用,目前已经成为污水中污染物去除建模和优化的高效工具[12]
    BP神经网络 是一种按误差逆传播算法训练的多层前馈网络,具有较强的非线性映射能力、自学习和自适应能力,以及较强的泛化能力和容错能力 由于算法会陷入局部极值,使网络不能以高精度逼近实际系统,可能需要多次学习和调整才能成功;算法学习过程收敛速度慢,需要较长的训练时间;对学习样本依赖性较强;网络结构选择不一 是目前应用最广泛的神经网络模型之一,主要用在函数逼近、模式识别、分类、数据压缩等方面,如水处理过程中的优化与控制等[52]
    径向基函数神经网络(RBFNN) 基函数可以是高斯函数,也可以是小波函数,支持在线和离线训练,逼近精度高,几乎能实现完全逼近;结构简单,训练速度快,可进行大范围的数据融合,可并行、高速地处理数据 需要大量的训练数据,需要大量隐层神经元[2] 被广泛用于函数逼近、时间序列分析、数据分类、模式识别、图像处理、系统建模、自动控制和故障诊断等领域,水环境治理方面主要应用于水质预测和污水中污染物去除等[53]
    支持向量机(SVM) 在解决小样本、非线性及高维模式识别中具有优势;算法简单,具有较好的鲁棒性 在批量处理模式下训练时,需要大量内存和CPU时间;解决多分类问题存在困难;对缺失数据敏感,对参数和核函数的选择较敏感 具有更为严密的理论和数学基础,可以分析数据、识别模式,广泛应用于统计分类和回归分析,已成功应用于水处理控制、水环境预警与评估领域[28]
    下载: 导出CSV
    (续表1)
    人工智能技术优点缺点适用性
    遗传算法(GA) 搜索能力强,具有良好的全局优化能力;个体选择具有随机性;鲁棒性强;易与其他方法或模型相结合 编程较为复杂;很难处理和优化维数较高的问题;迭代次数多导致计算量大,模型效率较低;对初始种群的选择有一定的依赖性;容易出现过早收敛问题,局部搜索能力差 是一种强大的优化工具,目前可用于优化污水处理工艺条件和污染物去除参数,以降低控制成本[51]
    模糊逻辑(FL) 可对任意复杂度的非线性函数进行建模;可容忍不精确的数据;具有灵活性,使用任何给定的系统,都可轻松实现更多功能,无需从头开始;鲁棒性强,尤其适用于非线性、时变、滞后系统的控制;有较强的容错能力 信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;模糊控制的设计尚缺乏系统性,无法定义控制目标 应用于污水处理工艺参数的优化,另外,在环境质量指标设计方面具有巨大应用潜力[39,54]
    模糊神经网络(FNN) 利用神经网络结构来实现模糊逻辑推理,包含模糊逻辑理论和神经网络,具有较强的自学习能力和自整定功能;人工干预少,精度较高,对专家知识的利用较好;对样本的要求较低 计算时间长;在多变量、复杂控制系统中,很难确定网络的结构和规则点的组合“爆炸”问题 可用于模糊回归、模糊控制器、模糊专家系统、模糊谱系分析、模糊矩阵方程、通用逼近器,适用于先进的控制系统,在污水处理领域得到广泛应用[11]
    自适应神经网络模糊推理系统(ANFIS) 基于数据建模,不需实际辨识模式;可对非线性系统进行辨识;收敛快,误差小,泛化能力强 需要样本多,对训练数据质量依赖性高 在预测、控制、数据挖掘和噪声消除等诸多领域具有强大应用价值[48]
    遗传算法-人工神经网络(GA-ANN) 搜索能力强;可防止局部最小值;快速收敛;精度高;有较好的鲁棒性 计算量大;无法确定隐藏神经元的数量 可用于环境预测预警系统、优化控制器参数、污染物去除建模与优化等领域[55]
    下载: 导出CSV
  • [1] BARR A, FEIGENBAUM E A. The handbook of artificial intelligence[M]. Los Altos, CA: Morgan Kaufmann, 1981.
    [2] YE Z P, YANG J Q, ZHONG N, et al. Tackling environmental challenges in pollution controls using artificial intelligence: a review[J]. Science of the Total Environment,2020,699:134279. doi: 10.1016/j.scitotenv.2019.134279
    [3] HUNTINGFORD C, JEFFERS E S, BONSALL M B, et al. Machine learning and artificial intelligence to aid climate change research and preparedness[J]. Environmental Research Letters,2019,14(12):124007. doi: 10.1088/1748-9326/ab4e55
    [4] 陈能汪, 余镒琦, 陈纪新, 等.人工神经网络模型在水质预警中的应用研究进展[J]. 环境科学学报,2021,41(12):4771-4782.

    CHEN N W, YU Y Q, CHEN J X, et al. Artificial neural network models for water quality early warning: a review[J]. Acta Scientiae Circumstantiae,2021,41(12):4771-4782.
    [5] PARK Y, KIM M, PACHEPSKY Y, et al. Development of a nowcasting system using machine learning approaches to predict fecal contamination levels at recreational beaches in Korea[J]. Journal of Environmental Quality,2018,47(5):1094-1102. doi: 10.2134/jeq2017.11.0425
    [6] WANG P, LIU Y, QIN Z D, et al. A novel hybrid forecasting model for PM10 and SO2 daily concentrations[J]. Science of the Total Environment,2015,505:1202-1212. doi: 10.1016/j.scitotenv.2014.10.078
    [7] PALANISWAMY D, RAMESH G, SIVASANKARAN S, et al. Optimising biogas from food waste using a neural network model[J]. Proceedings of the Institution of Civil Engineers-Municipal Engineer,2017,170(4):221-229. doi: 10.1680/jmuen.16.00008
    [8] KATIP A. Meteorological drought analysis using artificial neural networks for Bursa City, Turkey[J]. Applied Ecology and Environmental Research,2018,16(3):3315-3332. doi: 10.15666/aeer/1603_33153332
    [9] SHOOSHTARI S J, SILVA T, NAMIN B R, et al. Land use and cover change assessment and dynamic spatial modeling in the Ghara-su Basin, Northeastern Iran[J]. Journal of the Indian Society of Remote Sensing,2020,48(1):81-95. doi: 10.1007/s12524-019-01054-x
    [10] GOVINDARAJU R S. Artificial neural networks in hydrology: Ⅰ. preliminary concepts[J]. Journal of Hydrologic Engineering,2000,5(2):115-123. doi: 10.1061/(ASCE)1084-0699(2000)5:2(115)
    [11] OJHA V K, ABRAHAM A, SNÁŠEL V. Metaheuristic design of feedforward neural networks: a review of two decades of research[J]. Engineering Applications of Artificial Intelligence,2017,60:97-116. doi: 10.1016/j.engappai.2017.01.013
    [12] YIN Z Y, JIA B Y, WU S Q, et al. Comprehensive forecast of urban water-energy demand based on a neural network model[J]. Water,2018,10(4):385. doi: 10.3390/w10040385
    [13] JAMI M S, MUJELI M, KABBASHI N A. Simulation of ammoniacal nitrogen effluent using feedforward multilayer neural networks[J]. African Journal of Biotechnology,2011,81(10):18755-18762.
    [14] EBRAHIMPOOR S, KIAROSTAMI V, KHOSRAVI M, et al. Bees metaheuristic algorithm with the aid of artificial neural networks for optimization of acid red 27 dye adsorption onto novel polypyrrole/SrFe12O19/graphene oxide nanocomposite[J]. Polymer Bulletin,2019,76(12):6529-6553. doi: 10.1007/s00289-019-02700-7
    [15] YU R F, CHI F H, CHENG W P, et al. Application of pH, ORP, and DO monitoring to evaluate chromium(Ⅵ) removal from wastewater by the nanoscale zero-valent iron (nZVI) process[J]. Chemical Engineering Journal,2014,255:568-576. doi: 10.1016/j.cej.2014.06.002
    [16] BENSIDHOUM T, BOUAKRIF F, ZASADZINSKI M. Iterative learning radial basis function neural networks control for unknown multi input multi output nonlinear systems with unknown control direction[J]. Transactions of the Institute of Measurement and Control,2019,41(12):3452-3467. doi: 10.1177/0142331219826659
    [17] WANG J Y, SONG P Z, WANG Z, et al. A combined model for regional eco-environmental quality evaluation based on particle swarm optimization-radial basis function network[J]. Arabian Journal for Science and Engineering,2016,41(4):1483-1493. doi: 10.1007/s13369-015-1958-5
    [18] OZEL H U, GEMICI B T, OZEL H B, et al. Determination of water quality and estimation of monthly biological oxygen demand (BOD) using by different artificial neural networks models in the Bartin River[J]. Fresenius Environmental Bulletin,2017,26(8):5465-5476.
    [19] BOLANCA T, UKIC S, PETERNEL I, et al. Artificial neural network models for advanced oxidation of organics in water matrix-comparison of applied methodologies[J]. Indian Journal of Chemical Technology,2014,21(1):21-29.
    [20] ASFARAM A, GHAEDI M, AHMADI AZQHANDI M H, et al. Ultrasound-assisted binary adsorption of dyes onto Mn@CuS/ZnS-NC-AC as a novel adsorbent: application of chemometrics for optimization and modeling[J]. Journal of Industrial and Engineering Chemistry,2017,54:377-388. doi: 10.1016/j.jiec.2017.06.018
    [21] SINGH K P, GUPTA S, OJHA P, et al. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches[J]. Environmental Science and Pollution Research International,2013,20(4):2271-2287. doi: 10.1007/s11356-012-1102-y
    [22] TURAN N G, MESCI B, OZGONENEL O. The use of artificial neural networks (ANN) for modeling of adsorption of Cu(Ⅱ) from industrial leachate by pumice[J]. Chemical Engineering Journal,2011,171(3):1091-1097. doi: 10.1016/j.cej.2011.05.005
    [23] PAI P F, LIN K P, LIN C S, et al. Time series forecasting by a seasonal support vector regression model[J]. Expert Systems with Applications,2010,37(6):4261-4265. doi: 10.1016/j.eswa.2009.11.076
    [24] VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1995.
    [25] JARAMILLO F, ORCHARD M, MUÑOZ C, et al. On-line estimation of the aerobic phase length for partial nitrification processes in SBR based on features extraction and SVM classification[J]. Chemical Engineering Journal,2018,331:114-123. doi: 10.1016/j.cej.2017.07.185
    [26] HUANG J, ZHANG X, SUN Q Y, et al. Simultaneous rapid analysis of multiple nitrogen compounds in polluted river treatment using near-infrared spectroscopy and a support vector machine[J]. Polish Journal of Environmental Studies,2017,26(5):2013-2019. doi: 10.15244/pjoes/70002
    [27] GAO K, XI X J, WANG Z, et al. Use of support vector machine model to predict membrane permeate flux[J]. Desalination and Water Treatment,2016,57(36):16810-16821.
    [28] ZHANG J, ZHOU J T, LI Y M, et al. Computer simulating effluent quality of vertical tube biological reactor using support vector machine[J]. Advanced Materials Research,2011,219/220:322-326. doi: 10.4028/www.scientific.net/AMR.219-220.322
    [29] KALOGIROU S A. Artificial intelligence for the modeling and control of combustion processes: a review[J]. Progress in Energy and Combustion Science,2003,29(6):515-566. doi: 10.1016/S0360-1285(03)00058-3
    [30] AL-OBAIDI M A, LI J P, ALSADAIE S, et al. Modelling and optimisation of a multistage reverse osmosis processes with permeate reprocessing and recycling for the removal of N-nitrosodimethylamine from wastewater using Species Conserving Genetic Algorithms[J]. Chemical Engineering Journal,2018,350:824-834. doi: 10.1016/j.cej.2018.06.022
    [31] LOUZADAVALORY J P, REIS J A T D, MENDONÇA A S F. Combining genetic algorithms with a water quality model to determine efficiencies of sewage treatment systems in watersheds[J]. Journal of Environmental Engineering,2016,142(3):04015080. doi: 10.1061/(ASCE)EE.1943-7870.0001048
    [32] BRAND N, OSTFELD A. Optimal design of regional wastewater pipelines and treatment plant systems[J]. Water Environment Research,2011,83(1):53-64. doi: 10.2175/106143010X12780288628219
    [33] YETILMEZSOY K, OZKAYA B, CAKMAKCI M. Artificial Intelligence-based prediction models for environmental engineering[J]. Neural Network World,2011,21(3):193-218. doi: 10.14311/NNW.2011.21.012
    [34] de OLIVEIRA M D D, de REZENDE O L T d, OLIVEIRA S M A C, et al. Nova abordagem doíndice de qualidade deágua bruta utilizando a lógica fuzzy[J]. Engenharia Sanitaria e Ambiental,2014,19(4):361-372. doi: 10.1590/S1413-41522014019000000803
    [35] AL-ZAHRANI M, MOIED K. Identifying water quality monitoring stations in a water supply system[J]. Water Science and Technology:Water Supply,2014,14(6):1076-1086. doi: 10.2166/ws.2014.069
    [36] SARI H, YETILMEZSOY K, ILHAN F, et al. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates[J]. Environmental Science and Pollution Research International,2013,20(6):4235-4253. doi: 10.1007/s11356-012-1370-6
    [37] LIU B, HUANG J J, MCBEAN E, et al. Risk assessment of hybrid rain harvesting system and other small drinking water supply systems by game theory and fuzzy logic modeling[J]. Science of the Total Environment,2020,708:134436. doi: 10.1016/j.scitotenv.2019.134436
    [38] de OLIVEIRA M D, de REZENDE O L T, de FONSECA J F R, et al. Evaluating the surface water quality index fuzzy and its influence on water treatment[J]. Journal of Water Process Engineering,2019,32:100890. doi: 10.1016/j.jwpe.2019.100890
    [39] FLORES-ASIS R, MÉNDEZ-CONTRERAS J M, ALVARADO-LASSMAN A, et al. Analysis of the behavior for operation parameters in the anaerobic digestion process with thermal pretreatment, using fuzzy logic[J]. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances & Environmental Engineering,2019,54(6):592-602.
    [40] DOGDU G, YALCUK A, POSTALCIOGLU S. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic[J]. Environmental Technology,2017,38(4):443-455. doi: 10.1080/09593330.2016.1196741
    [41] SUTHAR S, VERMA R, DEEP S, et al. Optimization of conditions (pH and temperature) for Lemna gibba production using fuzzy model coupled with Mamdani ′s method[J]. Ecological Engineering,2015,83:452-455. doi: 10.1016/j.ecoleng.2015.07.006
    [42] RAHIMZADEH A, ASHTIANI F Z, OKHOVAT A. Application of adaptive neuro-fuzzy inference system as a reliable approach for prediction of oily wastewater microfiltration permeate volume[J]. Journal of Environmental Chemical Engineering,2016,4(1):576-584. doi: 10.1016/j.jece.2015.12.011
    [43] KIM C M, PARNICHKUN M. Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system[J]. Applied Water Science,2017,7(7):3885-3902. doi: 10.1007/s13201-017-0541-5
    [44] TAN H M, POH P E, GOUWANDA D. Resolving stability issue of thermophilic high-rate anaerobic palm oil mill effluent treatment via adaptive neuro-fuzzy inference system predictive model[J]. Journal of Cleaner Production,2018,198:797-805. doi: 10.1016/j.jclepro.2018.07.027
    [45] NAJAFZADEH M, ZEINOLABEDINI M. Prognostication of waste water treatment plant performance using efficient soft computing models: an environmental evaluation[J]. Measurement,2019,138:690-701. doi: 10.1016/j.measurement.2019.02.014
    [46] SADI M, FAKHARIAN H, GANJI H, et al. Evolving artificial intelligence techniques to model the hydrate-based desalination process of produced water[J]. Journal of Water Reuse and Desalination,2019,9(4):372-384. doi: 10.2166/wrd.2019.024
    [47] HUANG M Z, MA Y W, WAN J Q, et al. Improving nitrogen removal using a fuzzy neural network-based control system in the anoxic/oxic process[J]. Environmental Science and Pollution Research International,2014,21(20):12074-12084. doi: 10.1007/s11356-014-3092-4
    [48] AZQHANDI M H A, FOROUGHI M, YAZDANKISH E. A highly effective, recyclable, and novel host-guest nanocomposite for Triclosan removal: a comprehensive modeling and optimization-based adsorption study[J]. Journal of Colloid and Interface Science,2019,551:195-207. doi: 10.1016/j.jcis.2019.05.007
    [49] GHAEDI M, ANSARI A, BAHARI F, et al. A hybrid artificial neural network and particle swarm optimization for prediction of removal of hazardous dye brilliant green from aqueous solution using zinc sulfide nanoparticle loaded on activated carbon[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2015,137:1004-1015. doi: 10.1016/j.saa.2014.08.011
    [50] GHAEDI M, DASHTIAN K, GHAEDI A M, et al. A hybrid model of support vector regression with genetic algorithm for forecasting adsorption of malachite green onto multi-walled carbon nanotubes: central composite design optimization[J]. Physical Chemistry Chemical Physics,2016,18(19):13310-13321. doi: 10.1039/C6CP01531J
    [51] GHAEDI A M, GHAEDI M, POURANFARD A R, et al. Adsorption of Triamterene on multi-walled and single-walled carbon nanotubes: artificial neural network modeling and genetic algorithm optimization[J]. Journal of Molecular Liquids,2016,216:654-665. doi: 10.1016/j.molliq.2016.01.068
    [52] 陈威, 陈会娟, 戴凡翔, 等.基于人工神经网络的污水处理出水水质预测模型[J]. 给水排水,2020,46(增刊1):990-994.

    CHEN W, CHEN H J, DAI F X, et al. Effluent water quality prediction model based on artificial neural network for wastewater treatment[J]. Water & Wastewater Engineering,2020,46(Suppl1):990-994.
    [53] GHAEDI A M, VAFAEI A. Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review[J]. Advances in Colloid and Interface Science,2017,245:20-39. doi: 10.1016/j.cis.2017.04.015
    [54] PECHE R, RODRÍGUEZ E. Development of environmental quality indexes based on fuzzy logic: a case study[J]. Ecological Indicators,2012,23:555-565. doi: 10.1016/j.ecolind.2012.04.029
    [55] FAN M Y, HU J W, CAO R S, et al. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence[J]. Chemosphere,2018,200:330-343. ⊗ doi: 10.1016/j.chemosphere.2018.02.111
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  3831
  • HTML全文浏览量:  913
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 网络出版日期:  2022-04-21

目录

    /

    返回文章
    返回