Discussion on repair technologies of high-density polyethylene membrane leaks in landfill anti-seepage system
-
摘要:
高密度聚乙烯(HDPE)膜是填埋场防渗系统的核心组成部分,其破损引发的渗滤液渗漏会严重污染土壤和地下水环境,因此填埋场HDPE膜漏洞修补至关重要。系统总结了生活垃圾、一般工业废物和危险废物填埋场的防渗结构,并从HDPE膜漏洞成因与漏洞特征出发,分填埋场运行阶段探讨了目前不同填埋场HDPE膜漏洞修补技术的优缺点与适用条件。结果表明:自封自修技术能够在漏洞产生后进行自动修补,是未来填埋场防渗层的设计方向;电动修补技术可以实现对运行及封场后填埋场HDPE膜漏洞的靶向、精准修补,具有较广阔的应用前景。
Abstract:High-density polyethylene (HDPE) membrane is the core component of landfill anti-seepage system, and the leakage of leachate caused by its breakage can seriously contaminate the soil and groundwater environment, so the repair of landfill HDPE membrane leaks is crucial. The impermeable structures of domestic waste, general industrial waste and hazardous waste landfills were systematically summarized, and the advantages, disadvantages and conditions of present landfill HDPE membrane leak repair technologies at different stages of the landfill operation were discussed, according to the causes and characteristics of HDPE membrane leaks. The analysis showed that the self-sealing/self-healing technology could automatically repair the leaks after they were generated, being the design direction for future landfill liners, while the electrokinetic repair technology could achieve targeted and precise repair of landfill HDPE membrane leaks after operation and closure, which should have broader application prospects.
-
表 1 不同类型填埋场防渗结构参数汇总
Table 1. Parameters of impervious layer structures in different landfills
填埋场类型 防渗层结构 技术参数 厚度/mm 理论设计渗透系数/(cm/s) 一般工业固体废物填埋场 Ⅰ类场 天然、改性压实黏基础层;
具有同等隔水效力的防渗衬层≥750 ≤1.0×10−5 Ⅱ类场 单人工复合衬层 HDPE膜≥1.5,黏土层≥750 ≤1.0×10−7 生活垃圾填埋场 天然黏土防渗衬层(天然基础层饱和渗透系数小于1.0×
10−7 cm/s,且厚度不小于2 m)≥2 000 ≤1.0×10−7 单人工复合衬层(天然基础层饱和渗透系数小于1.0×
10−5 cm/s,且厚度不小于2 m)HDPE膜≥1.5,黏土层≥750 ≤1.0×10−7 双人工复合衬层(天然基础层饱和渗透系数不小于1.0×
10−5 cm/s或厚度不小于2 m)HDPE膜≥1.5,黏土层≥750 ≤1.0×10−7 危险废物填埋场 双人工复合衬层(天然基础层饱和渗透系数小于1.0×
10−5 cm/s,且厚度不小于2 m)HDPE膜≥2,黏土层主衬层≥300,黏土层次衬层≥500 ≤1.0×10−7 表 2 HDPE膜破损成因汇总[8,20-21]
Table 2. Summary of causes of HDPE membrane leakage
填埋场运行阶段 破损成因 漏洞数量占比/
%最小漏
洞面积/
cm2最大漏
洞面积/
cm2漏洞
特征运行前 质量不达标的膜存在抗刺穿强度、抗拉强度低等问题 2 7.90×10−3 0.30 面积小、
数量少HDPE膜被锐物顶破、刺破 69 0.01 8.03×104 隐蔽性强 焊接土工膜时出现脱焊、虚焊或脱胶 15 0.10 3.00×105 面积小、
数量多大型机械操作时土工膜被施工机械顶破损伤 14 0.03 5.00×105 漏洞巨大 运行期及封场期 运行过程老化
损伤施工验收阶段进行的防渗层破损检测工作无法检测到此类漏洞 漏洞上方环境复杂且难以精准探测漏洞 表 3 漏洞补技术特点
Table 3. Characteristics of various leak repair technologies
技术 优点 缺点 适用场景 异位修复 能彻底解决填埋场的污染问题 工程量大、成本高、易产生二次污染 破损严重、容量较小的填埋场 开挖修补 技术成熟、
成本低难以精准定位漏洞与开展修补施工,存在安全隐患 适用小面积破损的填埋场 灌浆修补 技术成熟、
施工期短难以精准定位漏洞,易对膜造成二次损伤 适用小面积破损的填埋场 电动修补 可靶向修复漏洞、安全、施工期短、造价低 技术还未成熟 适用范围仍需
探索自封自修 自动修复,节约大量的人力和物力 应用面较窄 仅适用于提前铺设自封自修材料的填埋场 -
[1] 陈安, 陈晶睿, 崔晶, 等.中国31个直辖市和省会(首府)城市“垃圾围城”风险与对策研究: 基于DIIS方法的实证研究[J]. 中国科学院院刊,2019,34(7):797-806.CHEN A, CHEN J R, CUI J, et al. Research on risks and countermeasures of "cities besieged by waste" in China: an empirical analysis based on DIIS[J]. Bulletin of Chinese Academy of Sciences,2019,34(7):797-806. [2] 国家统计局, 环境保护部. 2020中国环境统计年鉴[M]. 北京: 中国统计出版社, 2020. [3] 周北海, 王琪, 董路.垃圾填埋场构造对渗滤液成分的影响研究[J]. 环境科学研究,2000,13(3):6-8. doi: 10.3321/j.issn:1001-6929.2000.03.002ZHOU B H, WANG Q, DONG L. Study on effect of MSW landfill structure on component of leachate[J]. Research of Environmental Sciences,2000,13(3):6-8. doi: 10.3321/j.issn:1001-6929.2000.03.002 [4] 刘建国, 刘意立.我国生活垃圾填埋场渗滤液积累成因及控制对策[J]. 环境保护,2017,45(20):20-23. [5] 张士宽, 王月, 安达, 等.垃圾填埋场地下水污染修复技术优选研究[J]. 环境工程技术学报,2017,7(4):463-469. doi: 10.3969/j.issn.1674-991X.2017.04.063ZHANG S K, WANG Y, AN D, et al. Remediation technology optimization for groundwater contamination of municipal solid waste landfill[J]. Journal of Environmental Engineering Technology,2017,7(4):463-469. doi: 10.3969/j.issn.1674-991X.2017.04.063 [6] 张可心, 纪丹凤, 苏婧, 等.垃圾填埋场地下水污染风险分级评价[J]. 环境科学研究,2018,31(3):7. doi: 10.13198/j.issn.1001-6929.2017.04.17ZHANG K X, JI D F, SU J, et al. Risk assessment system for groundwater pollution from landfills[J]. Research of Environmental Sciences,2018,31(3):7. doi: 10.13198/j.issn.1001-6929.2017.04.17 [7] 郭庶, 于云江, 袁韧.垃圾填埋场二次污染物对周边环境及居民健康的影响[J]. 国外医学(卫生学分册),2007(2):75-79. [8] 徐亚, 能昌信, 刘玉强, 等.垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报,2015,9(9):4558-4564. doi: 10.12030/j.cjee.20150975XU Y, NAI C X, LIU Y Q, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering,2015,9(9):4558-4564. doi: 10.12030/j.cjee.20150975 [9] 杨一清.高密度聚乙烯(HDPE)膜在垃圾填埋场基底防渗层中的应用[J]. 环境卫生工程,2001,9(3):116-119. doi: 10.3969/j.issn.1005-8206.2001.03.004YANG Y Q. Application of HDPE geomembrane to leachate control of waste landfill site basement[J]. Environmental Sanitation Engineering,2001,9(3):116-119. doi: 10.3969/j.issn.1005-8206.2001.03.004 [10] 刘玉强, 能昌信, 黄启飞, 等. 填埋场防渗层HDPE膜漏洞修补装置: CN201933518U[P]. 2011-08-17. [11] DARILEK G T, CORAPCIOGLU M Y, YEUNG A T. Sealing leaks in geomembrane liners using electrophoresis[J]. Journal of Environmental Engineering,1996,122(6):540-544. doi: 10.1061/(ASCE)0733-9372(1996)122:6(540) [12] PIERRE L C, HANS A V D S. Method for sealing of a mass of waste: US5502268[P]. 1996-03-26. [13] 环境保护部. 生活垃圾填埋场污染控制标准: GB 16889—2008[S]. 北京: 中国环境科学出版社, 2008. [14] 生态环境部. 一般工业固体废物贮存和填埋污染控制标准: GB 18599—2020[S]. 北京: 中国环境科学出版社, 2020. [15] 生态环境部. 危险废物填埋污染控制标准: GB 18598—2019[S]. 北京: 中国标准出版社, 2019. [16] 刘建国, 聂永丰, 王洪涛, 等.填埋场不同防渗配置下渗滤液及污染物泄漏[J]. 清华大学学报(自然科学版),2004,44(12):1684-1687. doi: 10.3321/j.issn:1000-0054.2004.12.028LIU J G, NIE Y F, WANG H T, et al. Leachate and contaminant leakage in various types of landfill liners[J]. Journal of Tsinghua University (Science and Technology),2004,44(12):1684-1687. doi: 10.3321/j.issn:1000-0054.2004.12.028 [17] 唐晓武, 罗春泳, 陈云敏, 等.粘土环境岩土工程特性对填埋场衬垫防渗标准的影响[J]. 岩石力学与工程学报,2005,24(8):1396-1401. doi: 10.3321/j.issn:1000-6915.2005.08.019TANG X W, LUO C Y, CHEN Y M, et al. Effect of geoenvironmental characteristics of clay on standard of landfill liner[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(8):1396-1401. doi: 10.3321/j.issn:1000-6915.2005.08.019 [18] SHACKELFORD C D, BENSON C H, KATSUMI T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids[J]. Geotextiles and Geomembranes,2000,18(2/3/4):133-161. [19] 梁森荣, 张澄博, 张永定, 等.HDPE土工膜长期性能稳定性的研究进展[J]. 环境科学与技术,2012,35(9):77-81. doi: 10.3969/j.issn.1003-6504.2012.09.015LIANG S R, ZHANG C B, ZHANG Y D, et al. Review on long-term stability of HDPE geomembrane[J]. Environmental Science & Technology,2012,35(9):77-81. doi: 10.3969/j.issn.1003-6504.2012.09.015 [20] 向锐, 雷国元, 徐亚, 等.填埋场环境下HDPE膜老化特性及其对周边地下水污染风险的影响[J]. 环境科学研究,2020,33(4):978-986.XIANG R, LEI G Y, XU Y, et al. Aging behaviors of HDPE geomembrane in landfill environment and its impact on pollution risk of surrounding groundwater[J]. Research of Environmental Sciences,2020,33(4):978-986. [21] 岑威钧.土石坝防渗(复合)土工膜缺陷及其渗漏问题研究进展[J]. 水利水电科技进展,2016,36(1):16-22.CEN W J. Advances in research of defects and leakage of (composite) geomembrane in earth-rock dams[J]. Advances in Science and Technology of Water Resources,2016,36(1):16-22. [22] 陈云敏, 兰吉武, 李育超, 等.垃圾填埋场渗沥液水位壅高及工程控制[J]. 岩石力学与工程学报,2014,33(1):154-163. doi: 10.13722/j.cnki.jrme.2014.01.019 [23] 曾炜.喀斯特地区桑植县仙娥存量垃圾填埋场治理方案探析[J]. 环境卫生工程,2016,24(3):19-21. doi: 10.3969/j.issn.1005-8206.2016.03.006ZENG W. Treatment plan for xian'e aged waste landfill of Sangzhi Country in Karst Area[J]. Environmental Sanitation Engineering,2016,24(3):19-21. doi: 10.3969/j.issn.1005-8206.2016.03.006 [24] 李玲, 王颋军, 唐跃刚, 等.封场垃圾填埋场的治理与城市土地可持续利用[J]. 环境卫生工程,2013,21(3):20-22. doi: 10.3969/j.issn.1005-8206.2013.03.008LI L, WANG T J, TANG Y G, et al. Remediation of closed waste landfill sites and sustainable utilization of urban land[J]. Environmental Sanitation Engineering,2013,21(3):20-22. doi: 10.3969/j.issn.1005-8206.2013.03.008 [25] 季方. 简易垃圾填埋场污染土壤修复工程设计方案: 以仙居县湾陈简易垃圾填埋为例[D]. 杭州: 浙江工商大学, 2017. [26] 蓝宁锋.浅谈清流县观音堂垃圾填埋场存量垃圾治理措施[J]. 绿色环保建材,2020(1):50. [27] 能昌信, 孙新宇, 徐亚, 等.电法在垂直柔性防渗帷幕破损检测的应用[J]. 环境科学与技术,2018,41(3):151-155. doi: 10.19672/j.cnki.1003-6504.2018.03.022NAI C X, SUN X Y, XU Y, et al. Electrical method used in leakage detection of vertical flexible anti-seepage curtain[J]. Environmental Science & Technology,2018,41(3):151-155. doi: 10.19672/j.cnki.1003-6504.2018.03.022 [28] 沈磊. 城市固体废弃物填埋场渗滤液水位及边坡稳定分析[D]. 杭州: 浙江大学, 2011. [29] 蔡胜华. 长江三峡工程复合灌浆材料及施工技术研究[D]. 武汉: 武汉理工大学, 2006. [30] 董树国.孙家排灌站裂缝破坏现状及化学灌浆修补工艺探讨[J]. 地下水,2019,41(3):234-235. doi: 10.3969/j.issn.1004-1184.2019.03.095 [31] 石宁.双桥排灌站伸缩缝化学灌浆修补处理[J]. 吉林水利,2019(3):50-53. doi: 10.3969/j.issn.1009-2846.2019.03.017 [32] 金朝娣, 能昌信, 王振翀, 等.基于STFT填埋场衬层修补技术中振动信号分析[J]. 计算机仿真,2011,28(7):277-280. doi: 10.3969/j.issn.1006-9348.2011.07.069 [33] 武传鹏. 垃圾填埋场渗漏电法监测技术与应用研究[D]. 长春: 吉林大学, 2015. [34] ESRIG M I. Pore pressures, consolidation, and electrokinetics[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(4):899-921. doi: 10.1061/JSFEAQ.0001178 [35] 刘亦民. 软土地基电渗加固机理试验和理论研究[D]. 杭州: 浙江大学, 2019. [36] YEUNG A T, CHUNG M, CORAPCIOGLU M Y, et al. Impoundment liner repair by electrophoresis of clay[J]. Journal of Environmental Engineering,1997,123(10):993-1001. doi: 10.1061/(ASCE)0733-9372(1997)123:10(993) [37] KAMBHAM K K R, TUNCAY K, CORAPCIOGLU M Y. A semianalytical analysis of compressible electrophoretic cake formation[J]. Water Resources Research,1995,31(5):1421-1428. doi: 10.1029/95WR00143 [38] CORAPCIOGLU M Y, KAMBHAM K K R, TUNCAY K. Electrophoretic repair of impoundment leaks: analysis and verification with experimental data[J]. Environmental Science & Technology,1998,32(23):3778-3784. [39] HAN S J, KIM J Y, KIM B, et al. The 3-D simulation of electrophoresis method in leachate system for repairing of leaks in waste landfill geomembrane liner[J]. Journal of the Korean Society of Civil Engineers,2010,30(1):17-25. [40] SHI C J, BOOTH R. Laboratory development and field demonstration of self-sealing/self-healing landfill liner[J]. Waste Management,2005,25(3):231-238. doi: 10.1016/j.wasman.2004.11.006 [41] 吴倩芳. 垃圾填埋场自封自修粘土防渗层改性研究[D]. 长春: 吉林大学, 2008. [42] 王铁军. 固体废物填埋场防渗层改良研究[D]. 长春: 吉林大学, 2008.