Study on application effect of in-situ gas thermal remediation in decommissioned oil-to-gas production site
-
摘要:
燃气热脱附技术是一种适用于有机污染土壤高效热修复的技术。以某退役油制气场地污染土壤原位燃气热脱附项目为例,探讨了土壤修复目标温度,土壤、废水和废气中污染物浓度随原位燃气热脱附修复加热时间的变化。结果表明:加热修复结束时,不同土层的温度都最终达到或接近目标温度;在不同时间段、不同温度下相同或相近修复区域土壤中污染物浓度均处于较低水平,污染物去除率在95.45%以上;废水、废气处理工艺处理效果显著,污染物的去除率为98.5%~99.8%。研究显示,原位燃气热脱附修复技术具备进行大规模实际运用的理论条件。
Abstract:Gas thermal remediation technology (GTR) is an efficient technology to clean up organic contaminants from soil. A case study using GTR in a decommissioned oil-to-gas facility site was introduced. The changes of remediation target temperature, and concentrations of contaminants (COC) in soil, waste water and waste gas with the heating time of in-situ GTR were discussed. The results showed that the temperature of different soil layers finally reached or approached the target temperature at the end of thermal remediation. The COC in soil in the same or similar target areas was at a low level at different time periods and temperatures, and the removal rate reached above 96%. The removal rate of contaminants in waste water and waste gas reached 98.5%-99.8% and the above treatment processes were highly effective. The case study had proved that in-situ GTR could be applied on a large scale.
-
Key words:
- gas thermal remediation /
- target temperature /
- characteristic pollutants /
- removal rate
-
表 1 区域地层水力参数经验值
Table 1. Empirical values of regional formation hydraulic parameters
层序号 岩土 地层富水性 渗透系数/(10−5 cm/s) 3 砂质黏性土 弱富水 2 4-1 全风化花岗岩 弱富水 30 4-2 强风化花岗岩 弱富水 50 表 2 目标污染物平均初始浓度
Table 2. Average initial concentration of target pollutants
污染介质 污染物 浓度 土壤/(mg/kg) 苯 79.44 间/对二甲苯 64.89 萘 68.02 苯并(a)蒽 104.68 苯并(a)芘 94.36 地下水/(mg/L) 苯 4.50 萘 120.68 TPH(C10~C16) 256.43 甲苯 3.60 苯并(a)蒽 3.98 苯并(a)芘 1.33 二苯并(a,h)蒽 0.86 表 3 第一次土壤采样样品数量统计
Table 3. Statistics of soil samples sampled for the first time
采样点 采样深度/m 数量/个 S1、S4、S8、S11 1、3、5、8 16 S2、S3、S7、S10 1、3、5、8、11 20 S5、S6、S9 1、3、5、8、11、15 18 表 4 第二、三次土壤采样样品数量统计
Table 4. Second and third statistics of soil samples
第二次采样 第三次采样 采样深度/m 数量/个 S2-1 S3-1 2.5、6.5 4 S2-2 S3-2 2.5、6.5、10.5 6 S2-3 S3-3 2.5、6.5、10.5、14.5 8 表 5 第一次土壤采样结果
Table 5. Results of the first soil self-test sampling
污染物 S6 S11 S3 修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%苯并(a)蒽 47.85 ND 100 58.06 0.01 99.00 90.33 1.23 98.63 苯并(a)芘 123.01 1.53 98.76 90.03 2.53 97.19 45.22 0.33 99.27 苯 34.33 0.33 99.04 123.23 3.48 97.18 10.11 0.46 95.45 间/对二甲苯 100.01 3.33 96.67 78.00 0.12 99.84 32.23 0.99 96.93 萘 80.88 0.78 99.04 55.12 1.43 97.41 98.89 0.73 99.26 注:ND表示未检出,下同。 表 6 第二次土壤采样结果
Table 6. Results of the second soil self-test sampling
污染物 S2-1 S2-2 S2-3 修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%苯并(a)蒽 56.78 ND 100 63.58 ND 100 103.44 ND 100 苯并(a)芘 99.56 1.53 98.46 88.24 1.53 98.27 28.52 ND 100 苯 40.08 ND 100 119.99 1.48 98.77 11.11 ND 100 间/对二甲苯 100.01 3.02 96.98 88.02 0.12 98.88 38.55 0.99 97.43 萘 76.30 ND 100 59.18 ND 100 98.00 0.03 99.97 表 7 第三次土壤采样结果
Table 7. Results of the third soil self-test sampling
污染物 S3-1 S3-2 S3-3 修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%修复前/
(mg/kg)修复后/
(mg/kg)去除率/
%苯并(a)蒽 56.78 ND 100 63.58 ND 100 103.44 ND 100 苯并(a)芘 99.56 0.08 99.92 88.24 2.06 97.68 28.52 ND 100 苯 40.08 ND 100 119.99 1.99 98.34 11.11 ND 100 间/对二甲苯 100.01 2.48 97.52 88.02 ND 100 38.55 1.58 95.90 萘 76.30 ND 100 59.18 ND 100 98.00 0.22 99.78 -
[1] AZIZAN N A, KAMARUDDIN S A, CHELLIAPAN S. Steam-enhanced extraction experiments, simulations and field studies for dense non-aqueous phase liquid removal: a review[J]. MATEC Web of Conferences,2016,47:05012. doi: 10.1051/matecconf/20164705012 [2] 赵中华, 李晓东, 陈彤, 等.多氯联苯污染土壤热脱附研究综述[J]. 生态毒理学报,2016,11(2):61-68.ZHAO Z H, LI X D, CHEN T, et al. Overview on thermal desorption of PCBs-contaminated soil[J]. Asian Journal of Ecotoxicology,2016,11(2):61-68. [3] 高国龙, 蒋建国, 李梦露.有机物污染土壤热脱附技术研究与应用[J]. 环境工程,2012,30(1):128-131.GAO G L, JIANG J G, LI M L. Study on thermal desorption of organic contaminated soil and its application[J]. Environmental Engineering,2012,30(1):128-131. [4] 冉阳, 付峥嵘, 马满英, 等. 改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报, 2021, 11(3) : 173-180.RAN Y, FU Z R, MA M Y, et al. Research and application of amended bioretention tank in rainwater treatment of sponge city [J]. Journal of Environmental Engineering Technology, 2021, 11(1) : 173-180. [5] FRIESL W, FRIEDL J, PLATZER K, et al. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments[J]. Environmental Pollution,2006,144(1):40-50. doi: 10.1016/j.envpol.2006.01.012 [6] HAEMERS J, SAADAOUI H, JOURDAIN S, et al. In-situ thermal treatment in urban polluted areas: application of thermopile[J]. Con Soil,2008,1(3):123-132. [7] HASHIM M A, MUKHOPADHYAY S, SAHU J N, et al. Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management,2011,92(10):2355-2388. doi: 10.1016/j.jenvman.2011.06.009 [8] ZHANG D M, HOU L, ZHU D Q, et al. Synergistic role of different soil components in slow sorption kinetics of polar organic contaminants[J]. Environmental Pollution,2014,184:123-130. doi: 10.1016/j.envpol.2013.08.022 [9] FALCIGLIA P P, de GUIDI G, CATALFO A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J]. Chemical Engineering Journal,2016,296:162-172. doi: 10.1016/j.cej.2016.03.099 [10] FALCIGLIA P P, URSO G, VAGLIASINDI F G A. Microwave heating remediation of soils contaminated with diesel fuel[J]. Journal of Soils and Sediments,2013,13(8):1396-1407. doi: 10.1007/s11368-013-0727-x [11] ROGERS J A, HOLSEN T M, ANDERSON P R, et al. Effect of humidity on low temperature thermal desorption of volatile organic compounds from contaminated soil[J]. International Journal of Food Science & Technology,2010,28(2):153-158. [12] WANG F, SUN H W, REN X H, et al. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars[J]. Environmental Pollution,2017,231:229-236. doi: 10.1016/j.envpol.2017.08.023 [13] O'BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties: a review[J]. Journal of Environmental Management,2018,206:826-835. doi: 10.1016/j.jenvman.2017.11.052 [14] YI Y M, OH C T, KIM G J, et al. Changes in the physicochemical properties of soil according to soil remediation methods[J]. Journal of Soil and Groundwater Environment,2012,17(4):36-43. doi: 10.7857/JSGE.2012.17.4.036 [15] JIANG W X, ZHANG W, LI B J, et al. Combined Fenton oxidation and biological activated carbon process for recycling of coking plant effluent[J]. Journal of Hazardous Materials,2011,189(1/2):308-314. [16] LEMMING G, NIELSEN S G, WEBER K, et al. Optimizing the environmental performance of in situ thermal remediation technologies using life cycle assessment[J]. Groundwater Monitoring & Remediation,2013,33(3):38-51. [17] US Sustainable Remediation. Sustainable remediation white paper-integrating sustainable principles, practices, and metrics into remediation projects[J]. Remediation Journal,2009,19(3):5-114. doi: 10.1002/rem.20210 [18] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials,2011,185(1):392-400. doi: 10.1016/j.jhazmat.2010.09.046 [19] 北京市环境保护局,北京市质量技术监督局. 大气污染物综合排放标准: DB11/ 501—2017[S/OL].(2017-03-01)[2021-11-08].http://sthjj.beijing.gov.cn/eportal/fileDir/bjhrb/resource/cms/2017/01/2017012316495934873.pdf. [20] 李佳, 曹兴涛, 隋红, 等.石油污染土壤修复技术研究现状与展望[J]. 石油学报(石油加工),2017,33(5):811-833.LI J, CAO X T, SUI H, et al. Overview of remediation technologies for petroleum-contaminated soils[J]. Acta Petrolei Sinica (Petroleum Processing Section),2017,33(5):811-833. [21] 何黎, 白娟, 殷俊, 等.苯系物污染治理的研究进展[J]. 应用化工,2017,46(10):2039-2042. doi: 10.3969/j.issn.1671-3206.2017.10.043HE L, BAI J, YIN J, et al. Research progress of pollution control of benzene series[J]. Applied Chemical Industry,2017,46(10):2039-2042. doi: 10.3969/j.issn.1671-3206.2017.10.043 [22] 白洪亮. 活性炭吸附法脱除低浓度苯系物的研究[D]. 大连: 大连理工大学, 2006. [23] 张学良, 李群, 周艳, 等.某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报,2018,38(7):2868-2875. doi: 10.13671/j.hjkxxb.2018.0043ZHANG X L, LI Q, ZHOU Y, et al. In-Situ remediation of organics-contaminanted site by gas thermal desorption at a retired solvent plant[J]. Acta Scientiae Circumstantiae,2018,38(7):2868-2875. doi: 10.13671/j.hjkxxb.2018.0043 [24] 姜林, 钟茂生, 夏天翔, 等.基于土壤气中实测苯浓度的健康风险评价[J]. 环境科学研究,2012,25(6):717-723.JIANG L, ZHONG M S, XIA T X, et al. Health risk assessment based on benzene concentration detected in soil gas[J]. Research of Environmental Sciences,2012,25(6):717-723. [25] 王建刚. 复合型有机污染场地土壤热修复效果及其评价[D]. 南京: 南京农业大学, 2010. [26] 刘凯, 张瑞环, 王世杰.污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱,2017(12):31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013LIU K, ZHANG R H, WANG S J. Development and application of in situ thermal desorption for the remediation of contaminated sites[J]. China Chlor-Alkali,2017(12):31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013 [27] 郭修平, 郭庆海.“土十条”与土壤污染治理[J]. 生态经济,2016,32(2):10-13. [28] 张钰羚.科学借鉴外国成熟经验推进土壤污染防治立法[J]. 世界环境,2016(2):87.ZHANG Y L. Scientifically draw lessons from mature foreign experiences so as to promote legislation on soil contamination prevention[J]. World Environment,2016(2):87. [29] 骆永明.污染土壤修复技术研究现状与趋势[J]. 化学进展,2009,21(增刊 1):558-565.LUO Y M. Current research and development in soil remediation technologies[J]. Progress in Chemistry,2009,21(Suppl 1):558-565. [30] 国务院.土壤污染防治行动计划[J]. 中国环保产业,2016(6):5-11. [31] 叶渊, 许学慧, 李彦希, 等.热处理修复方式对污染土壤性质及生态功能的影响[J]. 环境工程技术学报,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134YE Y, XU X H, LI Y X, et al. Effects of thermal treatment on properties and ecological functions of contaminated soil[J]. Journal of Environmental Engineering Technology,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134 [32] 张瑞环, 钟茂生, 姜林, 等.基于DED模型的挥发性有机物健康风险评价[J]. 环境科学研究,2018,31(1):170-178.ZHANG R H, ZHONG M S, JIANG L, et al. Health risk assessment of volatile organic compounds based on DED model[J]. Research of Environmental Sciences,2018,31(1):170-178. □