留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退役油制气场地原位燃气热脱附应用效果

马迅 杨超 翁群强 刘志阳

马迅,杨超,翁群强,等.退役油制气场地原位燃气热脱附应用效果[J].环境工程技术学报,2023,13(1):280-286 doi: 10.12153/j.issn.1674-991X.20210656
引用本文: 马迅,杨超,翁群强,等.退役油制气场地原位燃气热脱附应用效果[J].环境工程技术学报,2023,13(1):280-286 doi: 10.12153/j.issn.1674-991X.20210656
MA X,YANG C,WENG Q Q,et al.Study on application effect of in-situ gas thermal remediation in decommissioned oil-to-gas production site[J].Journal of Environmental Engineering Technology,2023,13(1):280-286 doi: 10.12153/j.issn.1674-991X.20210656
Citation: MA X,YANG C,WENG Q Q,et al.Study on application effect of in-situ gas thermal remediation in decommissioned oil-to-gas production site[J].Journal of Environmental Engineering Technology,2023,13(1):280-286 doi: 10.12153/j.issn.1674-991X.20210656

退役油制气场地原位燃气热脱附应用效果

doi: 10.12153/j.issn.1674-991X.20210656
基金项目: 国家重点研发计划项目(2019YFC1804004)
详细信息
    作者简介:

    马迅(1992—),男,硕士,主要从事土壤污染防治研究,907087279@qq.com

  • 中图分类号: X53

Study on application effect of in-situ gas thermal remediation in decommissioned oil-to-gas production site

  • 摘要:

    燃气热脱附技术是一种适用于有机污染土壤高效热修复的技术。以某退役油制气场地污染土壤原位燃气热脱附项目为例,探讨了土壤修复目标温度,土壤、废水和废气中污染物浓度随原位燃气热脱附修复加热时间的变化。结果表明:加热修复结束时,不同土层的温度都最终达到或接近目标温度;在不同时间段、不同温度下相同或相近修复区域土壤中污染物浓度均处于较低水平,污染物去除率在95.45%以上;废水、废气处理工艺处理效果显著,污染物的去除率为98.5%~99.8%。研究显示,原位燃气热脱附修复技术具备进行大规模实际运用的理论条件。

     

  • 图  1  原位燃气热脱附工艺实施流程

    Figure  1.  Implementation flow chart of in-situ gas thermal remediation process

    图  2  场地监测点位布置

    Figure  2.  Layout of site monitoring points

    图  3  冷点位置示意

    Figure  3.  Cold spot location diagram

    图  4  第一次土壤采样采样点平面布置示意

    Figure  4.  Schematic diagram of the first soil sampling site layout

    图  5  第二、三次土壤采样采样点平面布置

    Figure  5.  Layout of the second and third soil sampling points

    图  6  不同深度土壤温度随时间变化曲线

    Figure  6.  Variation curve of soil temperature with time at different depths

    图  7  废水中污染物浓度随加热时间的变化

    Figure  7.  Variation of contaminant content in wastewater with heating time

    图  8  废气中污染物检测结果

    Figure  8.  Test results of pollutants in exhaust gas

    表  1  区域地层水力参数经验值

    Table  1.   Empirical values of regional formation hydraulic parameters

    层序号岩土地层富水性渗透系数/(10−5 cm/s)
    3砂质黏性土弱富水2
    4-1全风化花岗岩弱富水30
    4-2强风化花岗岩弱富水50
    下载: 导出CSV

    表  2  目标污染物平均初始浓度

    Table  2.   Average initial concentration of target pollutants

    污染介质污染物浓度
    土壤/(mg/kg)79.44
    间/对二甲苯64.89
    68.02
    苯并(a)蒽104.68
    苯并(a)芘94.36
    地下水/(mg/L)4.50
    120.68
    TPH(C10~C16)256.43
    甲苯3.60
    苯并(a)蒽3.98
    苯并(a)芘1.33
    二苯并(a,h)蒽0.86
    下载: 导出CSV

    表  3  第一次土壤采样样品数量统计

    Table  3.   Statistics of soil samples sampled for the first time

    采样点采样深度/m数量/个
    S1、S4、S8、S111、3、5、816
    S2、S3、S7、S101、3、5、8、1120
    S5、S6、S91、3、5、8、11、1518
    下载: 导出CSV

    表  4  第二、三次土壤采样样品数量统计

    Table  4.   Second and third statistics of soil samples

    第二次采样第三次采样采样深度/m数量/个
    S2-1S3-12.5、6.54
    S2-2S3-22.5、6.5、10.56
    S2-3S3-32.5、6.5、10.5、14.58
    下载: 导出CSV

    表  5  第一次土壤采样结果

    Table  5.   Results of the first soil self-test sampling

    污染物S6S11S3
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    苯并(a)蒽47.85ND10058.060.0199.0090.331.2398.63
    苯并(a)芘123.011.5398.7690.032.5397.1945.220.3399.27
    34.330.3399.04123.233.4897.1810.110.4695.45
    间/对二甲苯100.013.3396.6778.000.1299.8432.230.9996.93
    80.880.7899.0455.121.4397.4198.890.7399.26
      注:ND表示未检出,下同。
    下载: 导出CSV

    表  6  第二次土壤采样结果

    Table  6.   Results of the second soil self-test sampling

    污染物S2-1S2-2S2-3
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    苯并(a)蒽56.78ND10063.58ND100103.44ND100
    苯并(a)芘99.561.5398.4688.241.5398.2728.52ND100
    40.08ND100119.991.4898.7711.11ND100
    间/对二甲苯100.013.0296.9888.020.1298.8838.550.9997.43
    76.30ND10059.18ND10098.000.0399.97
    下载: 导出CSV

    表  7  第三次土壤采样结果

    Table  7.   Results of the third soil self-test sampling

    污染物S3-1S3-2S3-3
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    修复前/
    (mg/kg)
    修复后/
    (mg/kg)
    去除率/
    %
    苯并(a)蒽56.78ND10063.58ND100103.44ND100
    苯并(a)芘99.560.0899.9288.242.0697.6828.52ND100
    40.08ND100119.991.9998.3411.11ND100
    间/对二甲苯100.012.4897.5288.02ND10038.551.5895.90
    76.30ND10059.18ND10098.000.2299.78
    下载: 导出CSV
  • [1] AZIZAN N A, KAMARUDDIN S A, CHELLIAPAN S. Steam-enhanced extraction experiments, simulations and field studies for dense non-aqueous phase liquid removal: a review[J]. MATEC Web of Conferences,2016,47:05012. doi: 10.1051/matecconf/20164705012
    [2] 赵中华, 李晓东, 陈彤, 等.多氯联苯污染土壤热脱附研究综述[J]. 生态毒理学报,2016,11(2):61-68.

    ZHAO Z H, LI X D, CHEN T, et al. Overview on thermal desorption of PCBs-contaminated soil[J]. Asian Journal of Ecotoxicology,2016,11(2):61-68.
    [3] 高国龙, 蒋建国, 李梦露.有机物污染土壤热脱附技术研究与应用[J]. 环境工程,2012,30(1):128-131.

    GAO G L, JIANG J G, LI M L. Study on thermal desorption of organic contaminated soil and its application[J]. Environmental Engineering,2012,30(1):128-131.
    [4] 冉阳, 付峥嵘, 马满英, 等. 改良型生物滞留池在海绵城市雨水处理中的研究与应用[J]. 环境工程技术学报, 2021, 11(3) : 173-180.

    RAN Y, FU Z R, MA M Y, et al. Research and application of amended bioretention tank in rainwater treatment of sponge city [J]. Journal of Environmental Engineering Technology, 2021, 11(1) : 173-180.
    [5] FRIESL W, FRIEDL J, PLATZER K, et al. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments[J]. Environmental Pollution,2006,144(1):40-50. doi: 10.1016/j.envpol.2006.01.012
    [6] HAEMERS J, SAADAOUI H, JOURDAIN S, et al. In-situ thermal treatment in urban polluted areas: application of thermopile[J]. Con Soil,2008,1(3):123-132.
    [7] HASHIM M A, MUKHOPADHYAY S, SAHU J N, et al. Remediation technologies for heavy metal contaminated groundwater[J]. Journal of Environmental Management,2011,92(10):2355-2388. doi: 10.1016/j.jenvman.2011.06.009
    [8] ZHANG D M, HOU L, ZHU D Q, et al. Synergistic role of different soil components in slow sorption kinetics of polar organic contaminants[J]. Environmental Pollution,2014,184:123-130. doi: 10.1016/j.envpol.2013.08.022
    [9] FALCIGLIA P P, de GUIDI G, CATALFO A, et al. Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J]. Chemical Engineering Journal,2016,296:162-172. doi: 10.1016/j.cej.2016.03.099
    [10] FALCIGLIA P P, URSO G, VAGLIASINDI F G A. Microwave heating remediation of soils contaminated with diesel fuel[J]. Journal of Soils and Sediments,2013,13(8):1396-1407. doi: 10.1007/s11368-013-0727-x
    [11] ROGERS J A, HOLSEN T M, ANDERSON P R, et al. Effect of humidity on low temperature thermal desorption of volatile organic compounds from contaminated soil[J]. International Journal of Food Science & Technology,2010,28(2):153-158.
    [12] WANG F, SUN H W, REN X H, et al. Effects of humic acid and heavy metals on the sorption of polar and apolar organic pollutants onto biochars[J]. Environmental Pollution,2017,231:229-236. doi: 10.1016/j.envpol.2017.08.023
    [13] O'BRIEN P L, DESUTTER T M, CASEY F X M, et al. Thermal remediation alters soil properties: a review[J]. Journal of Environmental Management,2018,206:826-835. doi: 10.1016/j.jenvman.2017.11.052
    [14] YI Y M, OH C T, KIM G J, et al. Changes in the physicochemical properties of soil according to soil remediation methods[J]. Journal of Soil and Groundwater Environment,2012,17(4):36-43. doi: 10.7857/JSGE.2012.17.4.036
    [15] JIANG W X, ZHANG W, LI B J, et al. Combined Fenton oxidation and biological activated carbon process for recycling of coking plant effluent[J]. Journal of Hazardous Materials,2011,189(1/2):308-314.
    [16] LEMMING G, NIELSEN S G, WEBER K, et al. Optimizing the environmental performance of in situ thermal remediation technologies using life cycle assessment[J]. Groundwater Monitoring & Remediation,2013,33(3):38-51.
    [17] US Sustainable Remediation. Sustainable remediation white paper-integrating sustainable principles, practices, and metrics into remediation projects[J]. Remediation Journal,2009,19(3):5-114. doi: 10.1002/rem.20210
    [18] FALCIGLIA P P, GIUSTRA M G, VAGLIASINDI F G A. Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics[J]. Journal of Hazardous Materials,2011,185(1):392-400. doi: 10.1016/j.jhazmat.2010.09.046
    [19] 北京市环境保护局,北京市质量技术监督局. 大气污染物综合排放标准: DB11/ 501—2017[S/OL].(2017-03-01)[2021-11-08].http://sthjj.beijing.gov.cn/eportal/fileDir/bjhrb/resource/cms/2017/01/2017012316495934873.pdf.
    [20] 李佳, 曹兴涛, 隋红, 等.石油污染土壤修复技术研究现状与展望[J]. 石油学报(石油加工),2017,33(5):811-833.

    LI J, CAO X T, SUI H, et al. Overview of remediation technologies for petroleum-contaminated soils[J]. Acta Petrolei Sinica (Petroleum Processing Section),2017,33(5):811-833.
    [21] 何黎, 白娟, 殷俊, 等.苯系物污染治理的研究进展[J]. 应用化工,2017,46(10):2039-2042. doi: 10.3969/j.issn.1671-3206.2017.10.043

    HE L, BAI J, YIN J, et al. Research progress of pollution control of benzene series[J]. Applied Chemical Industry,2017,46(10):2039-2042. doi: 10.3969/j.issn.1671-3206.2017.10.043
    [22] 白洪亮. 活性炭吸附法脱除低浓度苯系物的研究[D]. 大连: 大连理工大学, 2006.
    [23] 张学良, 李群, 周艳, 等.某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J]. 环境科学学报,2018,38(7):2868-2875. doi: 10.13671/j.hjkxxb.2018.0043

    ZHANG X L, LI Q, ZHOU Y, et al. In-Situ remediation of organics-contaminanted site by gas thermal desorption at a retired solvent plant[J]. Acta Scientiae Circumstantiae,2018,38(7):2868-2875. doi: 10.13671/j.hjkxxb.2018.0043
    [24] 姜林, 钟茂生, 夏天翔, 等.基于土壤气中实测苯浓度的健康风险评价[J]. 环境科学研究,2012,25(6):717-723.

    JIANG L, ZHONG M S, XIA T X, et al. Health risk assessment based on benzene concentration detected in soil gas[J]. Research of Environmental Sciences,2012,25(6):717-723.
    [25] 王建刚. 复合型有机污染场地土壤热修复效果及其评价[D]. 南京: 南京农业大学, 2010.
    [26] 刘凯, 张瑞环, 王世杰.污染地块修复原位热脱附技术的研究及应用进展[J]. 中国氯碱,2017(12):31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013

    LIU K, ZHANG R H, WANG S J. Development and application of in situ thermal desorption for the remediation of contaminated sites[J]. China Chlor-Alkali,2017(12):31-37. doi: 10.3969/j.issn.1009-1785.2017.12.013
    [27] 郭修平, 郭庆海.“土十条”与土壤污染治理[J]. 生态经济,2016,32(2):10-13.
    [28] 张钰羚.科学借鉴外国成熟经验推进土壤污染防治立法[J]. 世界环境,2016(2):87.

    ZHANG Y L. Scientifically draw lessons from mature foreign experiences so as to promote legislation on soil contamination prevention[J]. World Environment,2016(2):87.
    [29] 骆永明.污染土壤修复技术研究现状与趋势[J]. 化学进展,2009,21(增刊 1):558-565.

    LUO Y M. Current research and development in soil remediation technologies[J]. Progress in Chemistry,2009,21(Suppl 1):558-565.
    [30] 国务院.土壤污染防治行动计划[J]. 中国环保产业,2016(6):5-11.
    [31] 叶渊, 许学慧, 李彦希, 等.热处理修复方式对污染土壤性质及生态功能的影响[J]. 环境工程技术学报,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134

    YE Y, XU X H, LI Y X, et al. Effects of thermal treatment on properties and ecological functions of contaminated soil[J]. Journal of Environmental Engineering Technology,2021,11(2):371-377. doi: 10.12153/j.issn.1674-991X.20200134
    [32] 张瑞环, 钟茂生, 姜林, 等.基于DED模型的挥发性有机物健康风险评价[J]. 环境科学研究,2018,31(1):170-178.

    ZHANG R H, ZHONG M S, JIANG L, et al. Health risk assessment of volatile organic compounds based on DED model[J]. Research of Environmental Sciences,2018,31(1):170-178. □
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  155
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10

目录

    /

    返回文章
    返回