Scenario simulation analysis of abrupt water pollution in Tongling section of the mainstream of the Yangtze River
-
摘要: 突发水环境事件情景模拟分析对风险防控与应急处置至关重要。在对铜陵市沿江化工企业风险物质泄漏情景分析的基础上,采用MIKE21二维水动力-水质耦合模型对长江干流铜陵段突发水污染事故进行了模拟。模型验证结果表明,构建的水动力模型满足精度要求。对某化工企业储罐3种泄漏情景下的模拟结果表明:同一水文期,风险物质对下游敏感受体的污染程度和污染时间主要与泄漏总量有关,储罐完全泄漏情景对下游敏感受体影响最大,其最大污染峰团浓度高于罐体20%管径破裂和罐体100%管径破裂泄漏情景2~3个数量级;不同水文期,泄漏物质在丰水期到达下游敏感受体的时间最短,储罐完全泄漏时风险物质到达下游三水厂取水口用时75 min,而在平水期和枯水期分别为103和111 min,同时影响时间更长、浓度更高,下游五水厂取水口和铜陵市出境断面在平水期和枯水期先后有2次污染峰团到达。Abstract: Scenario simulation analysis of abrupt water pollution is important for risk prevention and control and emergency response. Based on the analysis of risky substance leakage scenarios of chemical enterprises, MIKE21, a two-dimensional hydrodynamic-water quality coupling model, was used to simulate the abrupt water pollution accident in the Tongling section of the mainstream of the Yangtze River. The model verification showed the constructed hydrodynamic model could meet the accuracy requirements. The simulation results of three different leakage scenarios for one chemical company's storage tank showed that: in the same hydrological period, the pollution degree and time of risky substances to downstream sensitive receptors were mainly related to the total amount of leakage, and it had the most serious impact on downstream sensitive receptors when the storage tank was leaked entirely, and the maximum pollution peak was 2~3 orders of magnitude higher than 20% and 100% pipe diameter leakage. In different hydrological periods, risk substances took the shortest time to get to downstream sensitive receptors in the wet period, and it took 75 min for the risky material to reach the water intake of the Third Water Plant when the storage tank was leaked completely; but it took 103 min and 111 min during the normal and dry periods, respectively, and the impact time was longer and the concentration was higher. And there were two pollution peaks successively at the water intake of the downstream plant and the outbound section of the city in the normal and dry periods.
-
表 1 3种设定泄漏情景
Table 1. Three supposed leakage situations
水文期 泄漏情景 泄漏时间/min 丰水期/平水期/枯水期 情景A:罐体20%管径破裂 10 情景B:罐体100%管径破裂 10 情景C:储罐完全泄漏 10 -
[1] 国家突发环境事件应急预案[EB/OL]. (2019-12-27)[2021-10-17]. https://www.mee.gov.cn/ywgz/hjyj/yjzb/201912/t20191227_751708.shtml. [2] 宋永会, 袁鹏, 彭剑峰, 等.突发环境事件风险源识别与监控技术创新进展: (Ⅰ)环境风险源识别技术与应用[J]. 环境工程技术学报,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055SONG Y H, YUAN P, PENG J F, et al. Technological innovation progress of risk sources identification and monitoring of sudden environmental pollution accidents: (Ⅰ) risk sources identification technologies and applications[J]. Journal of Environmental Engineering Technology,2015,5(5):347-352. doi: 10.3969/j.issn.1674-991X.2015.05.055 [3] 陈成健.突发环境事件应急与管理研究[J]. 资源节约与环保,2018(7):122. doi: 10.3969/j.issn.1673-2251.2018.07.098 [4] 李旭, 吕佳佩, 裴莹莹, 等.国内突发环境事件特征分析[J]. 环境工程技术学报,2021,11(2):401-408.LI X, LÜ J P, PEI Y Y, et al. Analysis of the characteristics of environmental emergencies in China[J]. Journal of Environmental Engineering Technology,2021,11(2):401-408. [5] 李海生, 王丽婧, 张泽乾, 等.长江生态环境协同治理的理论思考与实践[J]. 环境工程技术学报,2021,11(3):409-417. doi: 10.12153/j.issn.1674-991X.20210071LI H S, WANG L J, ZHANG Z Q, et al. Theoretical thought and practice of eco-environment synergistic management in the Yangtze River[J]. Journal of Environmental Engineering Technology,2021,11(3):409-417. doi: 10.12153/j.issn.1674-991X.20210071 [6] 刘录三, 黄国鲜, 王璠, 等.长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究,2020,33(5):1081-1090.LIU L S, HUANG G X, WANG F, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Research of Environmental Sciences,2020,33(5):1081-1090. [7] 陈思莉, 黄大伟, 张政科, 等.流域突发水污染事件应急处置工程削污技术[J]. 环境工程学报,2021,15(7):2233-2238. doi: 10.12030/j.cjee.202008108CHEN S L, HUANG D W, ZHANG Z K, et al. Pollution reduction technologies for emergent water pollution disposal in river basins[J]. Chinese Journal of Environmental Engineering,2021,15(7):2233-2238. doi: 10.12030/j.cjee.202008108 [8] 李春晖, 田雨桐, 赵彦伟, 等.突发水污染风险评价与应急对策研究进展[J]. 农业环境科学学报,2020,39(6):1161-1167. doi: 10.11654/jaes.2020-0411LI C H, TIAN Y T, ZHAO Y W, et al. Research progress on risk assessment and emergency countermeasures of sudden water pollution[J]. Journal of Agro-Environment Science,2020,39(6):1161-1167. doi: 10.11654/jaes.2020-0411 [9] PAN F H, WANG Y B, ZHANG X X. Emergency measure of soft isolation controlling pollution diffusion response to sudden water pollution accidents[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research,2019,80(7):1238-1248. doi: 10.2166/wst.2019.368 [10] CHENG T J, WANG P P, LU Q Y. Risk scenario prediction for sudden water pollution accidents based on Bayesian networks[J]. International Journal of System Assurance Engineering and Management,2018,9(5):1165-1177. [11] 张珂, 刘仁志, 张志娇, 等.流域突发性水污染事故风险评价方法及其应用[J]. 应用基础与工程科学学报,2014,22(4):675-684.ZHANG K, LIU R Z, ZHANG Z J, et al. A method of environmental risk assessment for abrupt water pollution accidents in river basin[J]. Journal of Basic Science and Engineering,2014,22(4):675-684. [12] 朱瑶, 梁志伟, 李伟, 等.流域水环境污染模型及其应用研究综述[J]. 应用生态学报,2013,24(10):3012-3018.ZHU Y, LIANG Z W, LI W, et al. Watershed water environment pollution models and their applications: a review[J]. Chinese Journal of Applied Ecology,2013,24(10):3012-3018. [13] 李林子, 钱瑜, 张玉超.基于EFDC和WASP模型的突发水污染事故影响的预测预警[J]. 长江流域资源与环境,2011,20(8):1010-1016.LI L Z, QIAN Y, ZHANG Y C. Forecasting and warning the accidental water pollution effect based on the EFDC and WASP[J]. Resources and Environment in the Yangtze Basin,2011,20(8):1010-1016. [14] ZHENG H Z, LEI X H, SHANG Y Z, et al. Sudden water pollution accidents and reservoir emergency operations: impact analysis at Danjiangkou Reservoir[J]. Environmental Technology,2018,39(6):787-803. doi: 10.1080/09593330.2017.1311945 [15] 周华.河流综合水质模型QUAL2K应用研究[J]. 中国水利水电科学研究院学报,2010,8(1):71-75. doi: 10.3969/j.issn.1672-3031.2010.01.012ZHOU H. Application research of a comprehensive river water quality model QUAL2K[J]. Journal of China Institute of Water Resources and Hydropower Research,2010,8(1):71-75. doi: 10.3969/j.issn.1672-3031.2010.01.012 [16] 郭晓明, 乔明.MIKE21模型在排污口地表水影响预测方面的应用[J]. 四川环境,2021,40(3):117-123.GUO X M, QIAO M. Application of MIKE21 model in prediction of environmental impact of sewage outlet on surface water[J]. Sichuan Environment,2021,40(3):117-123. [17] 王晓青, 李哲.SWAT与MIKE21耦合模型及其在澎溪河流域的应用[J]. 长江流域资源与环境,2015,24(3):426-432. doi: 10.11870/cjlyzyyhj201503011WANG X Q, LI Z. SWAT and MIKE21 coupled models and their application in the Pengxi Watershed[J]. Resources and Environment in the Yangtze Basin,2015,24(3):426-432. doi: 10.11870/cjlyzyyhj201503011 [18] 袁玥, 师懿, 程胜高.基于二维动态水质模型的长江蕲春段水污染扩散分析[J]. 安全与环境学报,2016,16(1):212-217.YUAN Y, SHI Y, CHENG S G. Analysis of water pollution dispersion at Qichun section of the Yangtze River based on the 2-D dynamic water quality model[J]. Journal of Safety and Environment,2016,16(1):212-217. [19] WU D A, SHAO Y C, PAN J X. Study on activities and concentration of saline groupin the south branch in Yangtze River Estuary[J]. Procedia Engineering,2015,116:1085-1094. doi: 10.1016/j.proeng.2015.08.349 [20] 宫雪亮, 孙蓉, 芦昌兴, 等.基于MIKE21的南四湖上级湖水量水质响应模拟研究[J]. 中国农村水利水电,2019(1):70-76. doi: 10.3969/j.issn.1007-2284.2019.01.014GONG X L, SUN R, LU C X, et al. Research on the water quality and quantity response based on MIKE21 in the upper-reach lakes of Nansi Lake[J]. China Rural Water and Hydropower,2019(1):70-76. doi: 10.3969/j.issn.1007-2284.2019.01.014 [21] ZHU C J, LIANG Q, YAN F, et al. Reduction of waste water in Erhai Lake based on MIKE21 hydrodynamic and water quality model[J]. The Scientific World Journal,2013,2013:958506. [22] XU M J, YU L, ZHAO Y W, et al. The simulation of shallow reservoir eutrophication based on MIKE21: a case study of Douhe Reservoir in North China[J]. Procedia Environmental Sciences,2012,13:1975-1988. doi: 10.1016/j.proenv.2012.01.191 [23] 常赜, 张琼海, 姜宇, 等.基于MIKE21模型的入海排污口对澳门近岸海域水质影响分析[J]. 人民珠江,2021,42(3):70-80. doi: 10.3969/j.issn.1001-9235.2021.03.010CHANG Z, ZHANG Q H, JIANG Y, et al. Analysis of the impact of sewage outfall on the water quality of coastal waters of Macao based on MIKE21 model[J]. Pearl River,2021,42(3):70-80. doi: 10.3969/j.issn.1001-9235.2021.03.010 [24] 舒长莉, 李林, 冯韬.基于MIKE21的河道饮用水源地突发污染事故模拟: 以赣江南昌段为例[J]. 人民长江,2019,50(3):73-77.SHU C L, LI L, FENG T. Simulation of emergent water pollution accident in river-type drinking water sources based on MIKE21: case of Nanchang reach of Ganjiang River[J]. Yangtze River,2019,50(3):73-77. [25] 张铃松, 丁文慧, 孟凡生, 等.长江生态环境保护修复咸宁市驻点跟踪研究分析[J]. 环境与可持续发展,2019,44(5):48-50.ZHANG L S, DING W H, MENG F S, et al. Research and analysis of stationary tracking in Xianning City of Yangtze River ecological environment protection and remediation[J]. Environment and Sustainable Development,2019,44(5):48-50. [26] 王金南, 孙宏亮, 续衍雪, 等.关于“十四五”长江流域水生态环境保护的思考[J]. 环境科学研究,2020,33(5):1075-1080.WANG J N, SUN H L, XU Y X, et al. Water eco-environment protection framework in the Yangtze River Basin during the 14th Five-Year Plan Period[J]. Research of Environmental Sciences,2020,33(5):1075-1080. [27] 张西斌.铜陵淡水豚国家级自然保护区长江段物种资源现状调查研究[J]. 现代农业科技,2017(11):227-229. doi: 10.3969/j.issn.1007-5739.2017.11.141 [28] WARREN I R, BACH H K. MIKE 21: a modelling system for estuaries, coastal waters and seas[J]. Environmental Software,1992,7(4):229-240. doi: 10.1016/0266-9838(92)90006-P [29] 王青青, 吴昊, 王腊春, 等.突发污染事故对水源地的影响研究: 以长江南京段为例[J]. 生态与农村环境学报,2019,35(12):1557-1563.WANG Q Q, WU H, WANG L C, et al. Study on the impact of sudden pollution on water resources: a case study of Nanjing section of Yangtze River[J]. Journal of Ecology and Rural Environment,2019,35(12):1557-1563. [30] 刘晨辉, 刘思飔, 李丹, 等.基于MIKE21模型的长江中环排污口水质影响分析[J]. 中国农村水利水电,2020(1):72-76. doi: 10.3969/j.issn.1007-2284.2020.01.016LIU C H, LIU S S, LI D, et al. An analysis of the impact of Zhonghuan sewage outlet on water quality of the Yangtze River based on MIKE21 model[J]. China Rural Water and Hydropower,2020(1):72-76. doi: 10.3969/j.issn.1007-2284.2020.01.016 [31] 龙天渝, 屈瑶.长江重庆主城区段突发水污染事故模拟研究[J]. 重庆大学学报,2020,43(10):90-103.LONG T Y, QU Y. Simulation of an emergent water pollution accident in the portion of the Yangtze River running through the main urban areas of Chongqing[J]. Journal of Chongqing University,2020,43(10):90-103. [32] 刘晓东.长江下游水域码头硫酸泄漏事故风险评价[J]. 水资源保护,2009,25(3):76-79. doi: 10.3969/j.issn.1004-6933.2009.03.020LIU X D. Risk assessment of vitriol leakage accident at wharf in downriver reach of Yangtze River[J]. Water Resources Protection,2009,25(3):76-79. doi: 10.3969/j.issn.1004-6933.2009.03.020 [33] 生态环境部. 建设项目环境风险评价技术导则: HJ 169—2018[S]. 北京: 中国环境出版社, 2019.