Spatial variation characteristics and influencing factors of nitrogen and phosphorus ecological stoichiometry in the Yangtze River system
-
摘要: 氮(N)与磷(P)的化学计量学特征反映了N、P在生态系统过程中的耦合关系。当前对于长江水系中全流域N与P摩尔质量比(N:P)的时空衍化规律及其对人类活动的响应机制仍然缺乏科学认知,难以满足长江流域生态保护的治理理论和管理实践需求。根据长江水系水质监测数据和河流水沙数据,从全流域尺度上阐述长江水系N:P的时空分布特征,识别关键控制因素。结果表明:长江干流的N:P从上游到下游呈下降趋势,均值为92±78,大通站N:P输出为47±16;影响长江水系N:P空间变化的主要因素包括支流汇入、沿途面源输入、城市污水输入、磷矿开采活动以及水库拦截;颗粒态P和溶解态N的输入和截留控制着长江干流N:P的季节性差异。从生态化学计量学的角度,揭示人类活动对长江水系营养盐迁移转化的影响,可为未来长江流域生态修复和治理保护工作提供理论参考。Abstract: The nitrogen (N) and phosphorous (P) ecological stoichiometry characteristics reflected the coupling relationship between N and P in ecosystem process. However, there was a short of the insights in the spatial and temporal evolution law of the mole ratio of N and P (N:P) in the Yangtze River watershed, as well as its response mechanism to anthropogenic activities, which was difficult to satisfy the demands in the governance theory and management practice. Based on the water quality monitoring data and river water and sediment data of the Yangtze River system, the spatial-temporal distribution characteristics of N:P in the Yangtze River system were illustrated from the whole basin scale, and the critical impact factors on N:P variations were identified. The results showed that there was a decreased tendency of N:P in the mainstream from upstream to downstream with the average of 92±78. The N:P ratio of the export of Datong station was 47±16. The spatial variations of N:P in the Yangtze River system were influenced by inputs from tributaries, non-point sources input along the way, urban sewage input, phosphate mining activities, and reservoirs interception. Temporal patterns of N:P depended on the inputs and retention of particulate P and dissolved N in the river system. The impacts from human activities on the nutrient transportation and transformation in the Yangtze River system were preliminarily revealed on the view of ecological stoichiometry and a certain theoretical support was offered for future ecological restoration, management and protection of the Yangtze River watershed.
-
表 1 长江水系河流与典型湖泊水体的N:P
Table 1. Values of N:P in rivers and typical lakes in the Yangtze River network
水体 年均值 枯水期 丰水期 湖泊(洞庭湖和鄱阳湖) 56±24 51±19 60±27 河流 81±120 84±116 78±123 长江中下游河流(不含入湖河流) 53±24 54±26 52±23 洞庭湖 53±16 49±15 56±18 洞庭湖入湖河流 79±55 77±48 81±62 鄱阳湖 59±29 53±23 64±34 鄱阳湖入湖河流 34±16 37±18 32±14 -
[1] 贺金生, 韩兴国.生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报,2010,34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology,2010,34(1):2-6. doi: 10.3773/j.issn.1005-264x.2010.01.002 [2] 田地, 严正兵, 方精云.植物生态化学计量特征及其主要假说[J]. 植物生态学报,2021,45(7):682-713. doi: 10.17521/cjpe.2020.0331TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology,2021,45(7):682-713. doi: 10.17521/cjpe.2020.0331 [3] PENUELAS J, POULTER B, SARDANS J, et al. Human-induced nitrogen−phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications,2013,4:2934. doi: 10.1038/ncomms3934 [4] PENUELAS J, JANSSENS I A, CIAIS P, et al. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health[J]. Global Change Biology,2020,26(4):1962-1985. doi: 10.1111/gcb.14981 [5] WALDRON P. Critical zone science comes of age[J/OL]. Eos, 2020. doi: 10.1029/2020eo148734. [6] HARRISON J A, MARANGER R J, ALEXANDER R B, et al. The regional and global significance of nitrogen removal in lakes and reservoirs[J]. Biogeochemistry,2009,93(1/2):143-157. [7] WOLLHEIM W M, BERNAL S, BURNS D A, et al. River network saturation concept: factors influencing the balance of biogeochemical supply and demand of river networks[J]. Biogeochemistry,2018,141(3):503-521. doi: 10.1007/s10533-018-0488-0 [8] BEUSEN A H W, van BEEK L P H, BOUWMAN A F, et al. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water: description of IMAGE–GNM and analysis of performance[J]. Geoscientific Model Development,2015,8(12):4045-4067. doi: 10.5194/gmd-8-4045-2015 [9] AKBARZADEH Z, MAAVARA T, SLOWINSKI S, et al. Effects of damming on river nitrogen fluxes: a global analysis[J]. Global Biogeochemical Cycles,2019,33(11):1339-1357. doi: 10.1029/2019GB006222 [10] FINK G, ALCAMO J, FLÖRKE M, et al. Phosphorus loadings to the world's largest lakes: sources and trends[J]. Global Biogeochemical Cycles,2018,32(4):617-634. doi: 10.1002/2017GB005858 [11] MARCÉ R, ARMENGOL J. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics[J]. Hydrology and Earth System Sciences,2009,13(7):953-967. doi: 10.5194/hess-13-953-2009 [12] YAN W J, YIN C Q, TANG H X. Nutrient retention by multipond systems: mechanisms for the control of nonpoint source pollution[J]. Journal of Environmental Quality,1998,27(5):1009-1017. [13] ASMALA E, CARSTENSEN J, CONLEY D J, et al. Efficiency of the coastal filter: nitrogen and phosphorus removal in the Baltic Sea[J]. Limnology and Oceanography, 2017, 62(Suppl 1): 222-238. [14] ONANDIA G, LISCHEID G, KALETTKA T, et al. Biogeochemistry of natural ponds in agricultural landscape: lessons learned from modeling a kettle hole in Northeast Germany[J]. Science of the Total Environment,2018,634:1615-1630. doi: 10.1016/j.scitotenv.2018.04.014 [15] TAN E H, ZOU W B, JIANG X L, et al. Organic matter decomposition sustains sedimentary nitrogen loss in the Pearl River Estuary, China[J]. Science of the Total Environment,2019,648:508-517. doi: 10.1016/j.scitotenv.2018.08.109 [16] 马金玉, 王文才, 罗千里, 等.黄大湖沉积物营养盐分布及来源解析[J]. 环境工程技术学报,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257MA J Y, WANG W C, LUO Q L, et al. Distribution and source analysis of nutrients in sediments of Huangda Lake[J]. Journal of Environmental Engineering Technology,2021,11(4):678-685. doi: 10.12153/j.issn.1674-991X.20200257 [17] 颜秉斐, 彭剑峰, 胡吉国, 等.河道滞留塘对城市河流净化效果的影响[J]. 环境工程技术学报,2016,6(2):133-138. doi: 10.3969/j.issn.1674-991X.2016.02.020YAN B F, PENG J F, HU J G, et al. Effects of on-stream detention pond on polluted urban river purification[J]. Journal of Environmental Engineering Technology,2016,6(2):133-138. doi: 10.3969/j.issn.1674-991X.2016.02.020 [18] XIA X H, JIA Z M, LIU T, et al. Coupled nitrification-denitrification caused by suspended sediment (SPS) in rivers: importance of SPS size and composition[J]. Environmental Science & Technology,2017,51(1):212-221. [19] 刘俊, 田学达, 王琳杰, 等.洞庭湖表层沉积物营养盐空间分布及来源解析[J]. 环境工程技术学报,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180LIU J, TIAN X D, WANG L J, et al. Spatial distribution and source analysis of surface sediment nutrients in Lake Dongting[J]. Journal of Environmental Engineering Technology,2019,9(6):701-706. doi: 10.12153/j.issn.1674-991X.2019.05.180 [20] ANDERSEN I M, WILLIAMSON T J, GONZÁLEZ M J, et al. Nitrate, ammonium, and phosphorus drive seasonal nutrient limitation of chlorophytes, cyanobacteria, and diatoms in a hyper-eutrophic reservoir[J]. Limnology and Oceanography,2020,65(5):962-978. doi: 10.1002/lno.11363 [21] MAAVARA T, CHEN Q W, van METER K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment,2020,1(2):103-116. [22] 严广寒, 殷雪妍, 汪星, 等. 基于GAM模型的洞庭湖叶绿素a浓度与环境因子相关性分析[J/OL]. 中国环境科学.[2021-11-05].https://doi.org/10.19674/j.cnki.issn1000-6923.20210709.004.YAN G H, YIN X Y, WANG X, et al. Relationship of chlorophyll a concentration and environmental factors in Dongting Lake based on GAM model[J/Ol]. China Environmental Science.[2021-11-05].https://doi.org/10.19674/j.cnki.issn1000-6923.20210709.004. [23] TONG Y D, WANG M Z, PEÑUELAS J, et al. Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11566-11572. doi: 10.1073/pnas.1920759117 [24] MARANGER R, JONES S E, COTNER J B. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe[J]. Limnology and Oceanography Letters,2018,3(3):89-101. doi: 10.1002/lol2.10080 [25] ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters,2007,10(12):1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x [26] MAAVARA T, AKBARZADEH Z, van CAPPELLEN P. Global dam-driven changes to riverine N:P:Si ratios delivered to the coastal ocean[J/OL]. Geophysical Research Letters, 2020. doi: 10.1029/2020gl088288. [27] WANG J N, YAN W J, CHEN N W, et al. Modeled long-term changes of DIN: DIP ratio in the Changjiang River in relation to Chl-α and DO concentrations in adjacent estuary[J]. Estuarine, Coastal and Shelf Science,2015,166:153-160. doi: 10.1016/j.ecss.2014.11.028 [28] HU M P, LIU Y M, ZHANG Y F, et al. Long-term (1980-2015) changes in net anthropogenic phosphorus inputs and riverine phosphorus export in the Yangtze River Basin[J]. Water Research,2020,177:115779. doi: 10.1016/j.watres.2020.115779 [29] 水利部. 中国河流泥沙公报2019[R]. 北京: 中国水利水电出版社, 2020. [30] 水利部长江水利委员会. 长江泥沙公报2018[M]. 武汉: 长江出版社, 2019. [31] 刘录三, 黄国鲜, 王璠, 等.长江流域水生态环境安全主要问题、形势与对策[J]. 环境科学研究,2020,33(5):1081-1090.LIU L S, HUANG G X, WANG F, et al. Main problems, situation and countermeasures of water eco-environment security in the Yangtze River Basin[J]. Research of Environmental Sciences,2020,33(5):1081-1090. [32] LI Q Q, YU Q B, WANG F, et al. Nitrogen removal in the Chaohu Lake, China: implication in estimating lake N uptake velocity and modelling N removal efficiency of large lakes and reservoirs in the Changjiang River network[J]. Ecological Indicators,2021,124:107353. doi: 10.1016/j.ecolind.2021.107353 [33] WANG G Q, WANG J F, XIA X H, et al. Nitrogen removal rates in a frigid high-altitude river estimated by measuring dissolved N2 and N2O[J]. Science of the Total Environment,2018,645:318-328. doi: 10.1016/j.scitotenv.2018.07.090 [34] 李明龙, 贾梦丹, 孙天成, 等.三峡库区非点源污染氮磷负荷时空变化及其来源解析[J]. 环境科学,2021,42(4):1839-1846.LI M L, JIA M D, SUN T C, et al. Spatiotemporal change and source apportionment of non-point source nitrogen and phosphorus pollution loads in the Three Gorges Reservoir area[J]. Environmental Science,2021,42(4):1839-1846. [35] 严炜, 范建强, 陈葛成, 等.湖北省磷矿资源的空间富集规律及其产业布局[J]. 地质找矿论丛,2015,30(1):103-110. doi: 10.6053/j.issn.1001-1412.2015.01.015YAN W, FAN J Q, CHEN G C, et al. The spatial concentration of phosphorous mineral resources and industrial layout in Hubei Province[J]. Contributions to Geology and Mineral Resources Research,2015,30(1):103-110. doi: 10.6053/j.issn.1001-1412.2015.01.015 [36] SHEN Z L, LIU Q. Nutrients in the Changjiang River[J]. Environmental Monitoring and Assessment,2009,153(1/2/3/4):27-44. [37] LU X X, LI S Y, HE M, et al. Seasonal changes of nutrient fluxes in the Upper Changjiang Basin: an example of the Longchuanjiang River, China[J]. Journal of Hydrology,2011,405(3/4):344-351. [38] SHAN J, YANG P P, SHANG X X, et al. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates[J]. Biology and Fertility of Soils,2018,54(3):341-348. ◇ doi: 10.1007/s00374-018-1263-z