Temporal and spatial distribution of water quality and source apportionment in Cihu Lake, Huangshi City
-
摘要: 为解析黄石磁湖污染来源和水质时空分布,以磁湖2015—2019年水质监测数据为基础进行污染因子主成分分析(PCA),通过绝对主成分-多元线性回归(APCS-MLR)受体模型计算污染源贡献率,采用反距离权重插值法(IDW)分析水质时空分布规律。结果表明:影响磁湖水质的第1、第2、第3主成分分别是城市面源、城镇生活污染源及气象因子;第1主成分对BOD5、CODCr、CODMn、NH3-N、TN、TP的贡献率最大,分别为88%、76%、67%、55%、46%、67%,第2主成分对BOD5、NH3-N的贡献率较大,分别为39%、32%。磁湖主要污染来源为城市面源及城镇生活污染源,受历史上工矿企业生产造成的底泥淤积和上游区域城镇生活污水排放的影响,磁湖下陆港入湖口(1#点位)处的污染最严重。Abstract: In order to analyze the pollution sources and the spatial and temporal distribution of water quality in Cihu Lake, the principal component analysis (PCA) of pollution factors was conducted based on the water quality monitoring data of Cihu Lake from 2015 to 2019, and the contribution rate of pollution sources were calculated by absolute principal component score-multiple linear regression (APCS-MLR) receptor model, and the inverse distance weight interpolation (IDW) method was used to analyze the spatial and temporal distribution pattern of water quality. The results showed that the 1st, 2nd and 3rd principal components affecting the water quality of Cihu Lake were urban non-point sources, urban domestic pollution sources and meteorological factors, respectively; the contribution of the 1st principal component to BOD5 (88%), CODCr (76%), CODMn (67%), NH3-N (55%), TN (46%) and TP (67%) was the largest, and the contribution of the 2nd principal component to BOD5 (39%), NH3-N (32%) was larger. Overall, the main pollution sources of Cihu Lake were urban non-point sources and urban domestic pollution sources. From the spatial and temporal distribution map of the water quality, it could be seen that the most serious pollution was at the inlet of Xialu Port (point 1#), which was mainly affected by the siltation of bottom mud formed by the production of historically industrial and mining enterprises and urban domestic sewage in the upstream area.
-
表 1 监测指标描述性统计
Table 1. Descriptive statistics of monitoring indicators
水质指标 最小值(M) 最大值(X) 平均值(E) 标准偏差 TW/℃ 16.20 21.90 18.60 1.63 pH 6.99 8.65 8.12 0.38 EC/(mS/m) 32.40 48.30 39.70 4.02 DO浓度/(mg/L) 4.42 11.30 8.42 1.30 CODMn/(mg/L) 3.370 5.950 4.470 0.624 BOD5/(mg/L) 2.29 8.13 4.07 1.46 NH3-N浓度 /(mg/L) 0.070 1.830 0.356 0.335 CODCr/(mg/L) 15.60 26.50 19.60 2.83 TN浓度/(mg/L) 0.750 3.900 1.690 0.836 TP浓度/(mg/L) 0.070 0.250 0.111 0.035 F浓度/(mg/L) 0.350 0.487 0.410 0.030 表 2 磁湖各断面水质综合评价结果
Table 2. Comprehensive evaluation results of water quality of each section of Cihu Lake
项目 点位 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# A1 1.250 0.664 0.068 0.080 −0.273 −0.044 −0.398 −0.636 −0.535 −0.529 −0.487 0.845 A2 0.944 0.344 0.217 0.024 0.055 −0.028 −0.436 −0.516 −0.514 −0.760 −0.344 1.010 A3 1.370 0.651 0.624 0.355 0.445 0.119 −0.776 −0.688 −0.694 −0.672 −0.394 −0.341 A 1.180 0.554 0.254 0.129 0.012 0.001 −0.503 −0.608 −0.567 −0.640 −0.416 0.609 排名 1 3 4 5 6 7 9 11 10 12 8 2 表 3 磁湖主要污染指标的污染源贡献率
Table 3. Contribution rates of pollution sources to main pollution indexes in Cihu Lake
污染源 污染源对指标的贡献率/% BOD5 CODCr CODMn NH3-N TN TP F1 42 88 76 55 46 67 F2 39 32 21 10 F3 12 21 未识别源 19 24 12 11 23 -
[1] 周杰, 葛绪广, 陈成忠, 等.基于主成分分析的湖泊水环境质量评价: 以磁湖为例[J]. 安徽农业科学,2014,42(15):4743-4745. doi: 10.3969/j.issn.0517-6611.2014.15.071ZHOU J, GE X G, CHEN C Z, et al. Lake water environment quality evaluation based on principal component analysis: with Cihu Lake as an example[J]. Journal of Anhui Agricultural Sciences,2014,42(15):4743-4745. doi: 10.3969/j.issn.0517-6611.2014.15.071 [2] 刘瑞, 汪晓露, 胡涵, 等. 磁湖环境综合治理的研究[C]//第十三届世界湖泊大会论文集, 2009: 2333-2336. [3] 吴晓东, 马晓婵, 蒋北寒, 等.黄石市磁湖水体溶解性有机物的时空分布特征[J]. 生态与农村环境学报,2020,36(10):1276-1284.WU X D, MA X C, JIANG B H, et al. Temporal and spatial distribution characteristics of dissolved organic matter in Cihu Lake of Huangshi City[J]. Journal of Ecology and Rural Environment,2020,36(10):1276-1284. [4] 刘佳明, 张艳军, 宋星原, 等.江湖连通方案的最佳引水流量研究: 以湖北磁湖为例[J]. 湖泊科学,2014,26(5):671-681. doi: 10.18307/2014.0504LIU J M, ZHANG Y J, SONG X Y, et al. Optimal discharge of pollution flushing in an interconnected river-lake network: a case study of Lake Cihu, Hubei Province[J]. Journal of Lake Sciences,2014,26(5):671-681. doi: 10.18307/2014.0504 [5] 郭晶, 连花, 李利强, 等.洞庭湖水质污染状况及主要污染物来源分析[J]. 水生态学杂志,2019,40(4):1-7.GUO J, LIAN H, LI L Q, et al. Pollution status and source analysis of the water environment in Dongting Lake[J]. Journal of Hydroecology,2019,40(4):1-7. [6] MENG L, ZUO R, WANG J S, et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology,2018,218:70-83. doi: 10.1016/j.jconhyd.2018.10.005 [7] 蒋衡, 刘蓬, 刘琳, 等.基于PSR模型的磁湖流域生态系统健康评价[J]. 湖北大学学报(自然科学版),2021,43(6):661-666.JIANG H, LIU P, LIU L, et al. Ecosystem health assessment of Cihu Lake Basin based on PSR Model[J]. Journal of Hubei University (Natural Science),2021,43(6):661-666. [8] 仇梦璇, 刘蓬, 刘琳, 等.磁湖底泥重金属生态风险评价及溯源分析[J]. 湖北大学学报(自然科学版),2021,43(6):653-660.QIU M X, LIU P, LIU L, et al. Ecological risk assessment and source analysis of heavy metals in sediments of Cihu Lake[J]. Journal of Hubei University (Natural Science),2021,43(6):653-660. [9] 张建春, 盖希光.湖北黄石市磁湖治理实践[J]. 中国防汛抗旱,2015,25(2):80-83. doi: 10.3969/j.issn.1673-9264.2015.02.027ZHANG J C, GAI X G. Ecological services and water quality restoration of Ci-Lake in Huangshi City[J]. China Flood & Drought Management,2015,25(2):80-83. doi: 10.3969/j.issn.1673-9264.2015.02.027 [10] HAJI GHOLIZADEH M, MELESSE A M, REDDI L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida[J]. Science of the Total Environment,2016,566/567:1552-1567. doi: 10.1016/j.scitotenv.2016.06.046 [11] CHENG G W, WANG M J, CHEN Y, et al. Source apportionment of water pollutants in the upstream of Yangtze River using APCS-MLR[J]. Environmental Geochemistry and Health,2020,42(11):3795-3810. doi: 10.1007/s10653-020-00641-z [12] 杜展鹏, 王明净, 严长安, 等.基于绝对主成分-多元线性回归的滇池污染源解析[J]. 环境科学学报,2020,40(3):1130-1137.DU Z P, WANG M J, YAN C A, et al. Pollution source apportionment of Lake Dianchi based on absolute principal component score-multiple linear regression[J]. Acta Scientiae Circumstantiae,2020,40(3):1130-1137. [13] 赵含嫣, 赵锐, 孙源媛, 等.基于受体模型和控制单元分区的流域污染源解析: 以永定河张家口段为例[J]. 环境工程技术学报,2020,10(5):758-768. doi: 10.12153/j.issn.1674-991X.20200008ZHAO H Y, ZHAO R, SUN Y Y, et al. Watershed pollution source analysis based on receptor model and control unit division: taking Zhangjiakou Section of Yongding River as an example[J]. Journal of Environmental Engineering Technology,2020,10(5):758-768. doi: 10.12153/j.issn.1674-991X.20200008 [14] 涂茜, 黄浩, 陆谢娟, 等.基于PMF模型的城市黑臭水体污染源解析: 以武汉市湖溪河为例[J]. 环境保护科学,2019,45(6):59-63.TU X, HUANG H, LU X J, et al. Analysis of pollution sources of urban black-odor water based on PMF model: a case study of the Huxi River in Wuhan[J]. Environmental Protection Science,2019,45(6):59-63. [15] 杨丽萍. 浙江省两个典型流域水体污染特征及污染源解析研究[D]. 杭州: 浙江大学, 2015. [16] 后希康, 张凯, 段平洲, 等.基于APCS-MLR模型的沱河流域污染来源解析[J]. 环境科学研究,2021,34(10):2350-2357.HOU X K, ZHANG K, DUAN P Z, et al. Pollution source apportionment of tuohe river based on absolute principal component score-multiple linear regression[J]. Research of Environmental Sciences,2021,34(10):2350-2357. [17] 王兴, 苗春生, 江燕如, 等.台站温度质量控制中IDW算法改进及应用[J]. 气象科技,2014,42(4):605-611. doi: 10.3969/j.issn.1671-6345.2014.04.014WANG X, MIAO C S, JIANG Y R, et al. Quality control of temperature observation data with improved IDW Algorithm[J]. Meteorological Science and Technology,2014,42(4):605-611. doi: 10.3969/j.issn.1671-6345.2014.04.014 [18] CHEN F W, LIU C W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan[J]. Paddy and Water Environment,2012,10(3):209-222. doi: 10.1007/s10333-012-0319-1 [19] YANG W J, ZHAO Y, WANG D, et al. Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xin'anjiang River in Huangshan, China[J]. International Journal of Environmental Research and Public Health,2020,17(8):2942. doi: 10.3390/ijerph17082942 [20] 刘潇, 薛莹, 纪毓鹏, 等.基于主成分分析法的黄河口及其邻近水域水质评价[J]. 中国环境科学,2015,35(10):3187-3192. doi: 10.3969/j.issn.1000-6923.2015.10.040LIU X, XUE Y, JI Y P, et al. An Assessment of water quality in the yellow river estuary and its adjacent waters based on principal component analysis[J]. China Environmental Science,2015,35(10):3187-3192. doi: 10.3969/j.issn.1000-6923.2015.10.040 [21] 左朝晖. 北京东北部平原区地下水氮素污染源解析及其贡献率研究[D]. 石家庄: 河北地质大学, 2020. [22] 周玮. 黄石市城区内湖水环境现状评价及生态保护研究[D]. 武汉: 武汉工程大学, 2015. [23] 赵峰.武汉市浅水湖泊生态系统健康评价指标重要度分析[J]. 工业安全与环保,2009,35(12):31-33. doi: 10.3969/j.issn.1001-425X.2009.12.013ZHAO F. Analysis on the importance of indicators of ecosystem health assessment for shallow Lakes in Wuhan[J]. Industrial Safety and Environmental Protection,2009,35(12):31-33. doi: 10.3969/j.issn.1001-425X.2009.12.013 [24] 王敦球, 武力, 刘慧莹, 等.湘江永州流域水质时空规律及污染源解析[J]. 桂林理工大学学报,2021,41(1):165-173. doi: 10.3969/j.issn.1674-9057.2021.01.021WANG D Q, WU L, LIU H Y, et al. Temporal and spatial regularity of water quality and pollution sources in Yongzhou Section of Xiangjiang River[J]. Journal of Guilin University of Technology,2021,41(1):165-173. doi: 10.3969/j.issn.1674-9057.2021.01.021 [25] 朱世安, 骆新容.磁湖底泥氮释放通量的研究[J]. 环境科学与管理,2012,37(8):44-47. doi: 10.3969/j.issn.1673-1212.2012.08.011ZHU S A, LUO X R. Estimation on sediment nitrogen release capacity of Cihu Lake[J]. Environmental Science and Management,2012,37(8):44-47. doi: 10.3969/j.issn.1673-1212.2012.08.011 [26] 蒋笑影, 夏霆, 潘新星, 等.苏州湖泊水源地水质时空变异特征[J]. 中国农村水利水电,2020(9):190-195. doi: 10.3969/j.issn.1007-2284.2020.09.038JIANG X Y, XIA T, PAN X X, et al. The temporal and spatial variations of water quality in lake water sources of Suzhou[J]. China Rural Water and Hydropower,2020(9):190-195. doi: 10.3969/j.issn.1007-2284.2020.09.038 [27] 孙悦, 李再兴, 张艺冉, 等.雄安新区—白洋淀冰封期水体污染特征及水质评价[J]. 湖泊科学,2020,32(4):952-963. doi: 10.18307/2020.0405SUN Y, LI Z X, ZHANG Y R, et al. Water pollution characteristics and water quality evaluation during the freezing period in Lake Baiyangdian of Xiongan New Area[J]. Journal of Lake Sciences,2020,32(4):952-963. ⊗ doi: 10.18307/2020.0405