Assessment of the environmental risk of the industrial parks of Yibin section of the upper reaches of the Yangtze River based on analytic hierarchy process
-
摘要: 长江宜宾段工业园区中分布着众多化工企业,对周边流域生态环境具有潜在风险。选择环境风险源、管控机制、风险受体3个准则层,包括行业类型、园区企业生产工艺、环境管理体系、环境风险管理体系、受纳水体环境等13个指标层建立评估模型体系;采用层次分析法(AHP)评估了宜宾市6家工业园区(A~F)的环境风险评。结果表明,6家工业园区准则层权重总占比表现为环境风险源(69.939)>环境风险受体(38.076)>风险管控机制(33.420),各园区环境风险综合值表现为B园区(19.147)<D园区(19.265)<A园区(22.237)<C园区(23.646) <F园区(25.838)<E园区(30.321),各工业园区均属于中等环境风险。Abstract: Many chemical enterprises are distributed in the industrial parks of Yibin section of the Yangtze River, which have potential risks to the ecological environment of the surrounding basin. There is still a lack of corresponding technical guidelines and normative references for regional environmental risk assessment such as industrial parks. Using analytic hierarchy process (AHP), the environmental risk assessment of six industrial parks (A-F) in Yibin was carried out. Three criteria layers, namely, environmental risk sources, control measures and risk receptors, and 13 index layers were selected to establish the evaluation model. The 13 index layers included industry type, production process of enterprises in the park, environmental management system, environmental risk management system and receiving water environment, etc. The results showed that the total weight proportion of the criterion layer of the six industrial parks was environmental risk source (69.939) > environmental risk receptor (38.076) > risk control mechanism (33.420). The total environmental risk values of the parks were in the order of Park B (19.147) < Park D (19.265) < Park A (22.237) < Park C (23.646) < Park F (25.838) < Park E (30.321), all belonging to medium environmental risk.
-
表 1 相对重要性取值
Table 1. Relative importance value
相对重要性
(bij、cij)取值定义 1 i与j同样重要 3 i比j稍微重要 5 i比j明显重要 7 i比j强烈重要 9 i比j绝对重要 2,4,6,8 2个相对重要性标度之间的中间值 倒数 若b层中的i与j进行比较,则判断值为
bij,其中bij与bji成倒数关系,即bij=1/bji表 2 bk-c之间的判断矩阵
Table 2. Judgement matrix between bk-c
指标 c1 … cn c1 1 … c1n $ \ddots$ cn cn1 … 1 表 3 各级指标权重
Table 3. Index weight values at all levels
一级指标 权重 二级指标 权重 排序 环境风险源 0.333 行业类型 0.161 2 园区企业生产工艺 0.052 7 园区内危险物品 0.090 4 危险物排放情况 0.029 10 风险管控机制 0.506 环境管理体系 0.033 9 环境风险管理体系 0.131 3 环境应急预案处置 0.253 1 环境监控情况 0.090 5 环境风险受体 0.161 保护区类型 0.011 12 受纳水体环境 0.089 6 受纳大气环境 0.044 8 生态脆弱性 0.012 11 人口密度 0.006 13 表 4 工业园区风险评估指标评分标准
Table 4. Scoring standards of the industrial park risk assessment index
准则层 评估指标 评分标准 环境风险源 行业类型 化工、石化,50分;危险品贮存与运输,40分;医药、电镀、冶炼,30分;机械制造、建筑施工,20分;其他,10分 企业生产工艺 国内落后(高危生产工艺),50分;国内一般(高危生产工艺),40分;国内先进(高危生产工艺),30分;国内领先,20分;国际领先,10分 园区内危险物品 存在重点环境管理危险废物,100分;不存在,0分 危险物排放情况 当0<Q<10,10分;当10≤Q<100,30分;当Q≥100,50分 风险管控
机制环境管理体系 无环境管理体系,50分;管理体系简单且无专门管理机构,40分;管理体系完善且无专门管理机构,30分;管理体系完善且有专门管理机构,20分;体系完善有专门管理机构通过ISO 14000认证,0分 环境风险管理体系 有完善的安全管理制度且有环境风险监督机制,0分;有完善的安全管理制度,20分;有初级的安全管理制度,30分;列入编制计划,40分;无,50分 环境应急预案处置 有完善应急预案且有事故应急演练,0分;有完善应急预案,20分;有初级应急预案,30分;列入编制计划,40分;无,50分 环境监控情况 自动在线监测(常规指标和行业特性指标),0分;自动在线监测(常规指标),20分;定期人工监测,30分;不定期人工检测,40分;无,50分 环境风险
受体保护区类型 企业雨水、清净下水、污水排口下游10 km内有自然保护区、重要湿地、风景名胜区、特殊生态系统以及自来水厂取水口、各大学校、医院、居民居住地等,50分;企业雨水、清净下水、污水排口下游10 km内有水产养殖区、天然渔场、耕地、基本农田保护区、地质公园、森林公园、天然林等,30分;无上述2类情况,10分 受纳水体环境 受纳大气环境 生态脆弱性 人口密度 <1 000人/km2,10分;1 000~2 000人/km2,30分;≥2 000人/km2,50分 表 5 6家工业园区环境风险值
Table 5. Environmental risk value of six industrial parks
工业园区 环境风险源 风险管控机制 环境风险受体 环境风险综合值 A 8.040 6.117 8.080 22.237 B 6.250 5.053 7.844 19.147 C 16.640 3.833 3.173 23.646 D 6.250 5.053 7.962 19.265 E 16.118 6.359 7.844 30.321 F 16.640 6.025 3.173 25.838 -
[1] 文传浩, 滕祥河.长江经济带转型发展的方向[J]. 开放导报,2017(3):18-21. doi: 10.3969/j.issn.1004-6623.2017.03.004WEN C H, TENG X H. The direction of the Yangtze River economic belt transformation[J]. China Opening Journal,2017(3):18-21. doi: 10.3969/j.issn.1004-6623.2017.03.004 [2] 曹啸. 长江上游沿江经济带发展研究: 以宜宾市为例[D]. 成都: 四川省社会科学院, 2011. [3] 郭媛媛.浅析长江流域生态治理与经济发展[J]. 热带农业工程,2020,44(4):101-104.GUO Y Y. Ecological governance and economic development of Yangtze River Basin[J]. Tropical Agricultural Engineering,2020,44(4):101-104. [4] DING G Y, XIN L, GUO Q A, et al. Environmental risk assessment approaches for industry park and their applications[J]. Resources, Conservation and Recycling,2020,159:104844. doi: 10.1016/j.resconrec.2020.104844 [5] TORRESAN S, CRITTO A, RIZZI J, et al. DESYCO: a decision support system for the regional risk assessment of climate change impacts in coastal zones[J]. Ocean & Coastal Management,2016,120:49-63. [6] DEPLEDGE M H, FOSSI M C. The role of biomarkers in environmental assessment: invertebrates[J]. Ecotoxicology (London, England),1994,3(3):161-172. doi: 10.1007/BF00117081 [7] SHAO C F, YANG J A, TIAN X G, et al. Integrated environmental risk assessment and whole-process management system in chemical industry parks[J]. International Journal of Environmental Research and Public Health,2013,10(4):1609-1630. doi: 10.3390/ijerph10041609 [8] 史哲齐, 李继繁, 王悦, 等.基于TOPSIS-AHP法的石化企业环境风险筛选研究[J]. 南开大学学报(自然科学版),2020,53(1):17-25.SHI Z Q, LI J F, WANG Y, et al. Study on environmental risk screening of petrochemical enterprises based on TOPSIS-AHP[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2020,53(1):17-25. [9] PENG J F, SONG Y H, YUAN P, et al. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks[J]. Journal of Environmental Sciences,2013,25(7):1441-1449. doi: 10.1016/S1001-0742(12)60187-9 [10] GE Y, DOU W, GU Z H, et al. Assessment of social vulnerability to natural hazards in the Yangtze River Delta, China[J]. Stochastic Environmental Research and Risk Assessment,2013,27(8):1899-1908. doi: 10.1007/s00477-013-0725-y [11] GIUBILATO E, ZABEO A, CRITTO A, et al. A risk-based methodology for ranking environmental chemical stressors at the regional scale[J]. Environment International,2014,65:41-53. doi: 10.1016/j.envint.2013.12.013 [12] KARIMI M, NAZARI R, DUTOVA D, et al. A conceptual framework for environmental risk and social vulnerability assessment in complex urban settings[J]. Urban Climate,2018,26:161-173. doi: 10.1016/j.uclim.2018.08.005 [13] 周德红.最大可信事故的化学工业园区风险分析[J]. 武汉工程大学学报,2011,33(7):66-68. doi: 10.3969/j.issn.1674-2869.2011.07.019ZHOU D H. Risk analysis of chemical industry park based on the maximum credible accident[J]. Journal of Wuhan Institute of Technology,2011,33(7):66-68. doi: 10.3969/j.issn.1674-2869.2011.07.019 [14] LIU H L. Parameter uncertainty analysis in environmental risk assessment caused by hazardous chemical accident[J]. Applied Ecology and Environmental Research,2019,17(5):11851-11867. [15] MENG X J, ZHANG Y, YU X Y, et al. Regional environmental risk assessment for the Nanjing Chemical Industry Park: an analysis based on information-diffusion theory[J]. Stochastic Environmental Research and Risk Assessment,2014,28(8):2217-2233. doi: 10.1007/s00477-014-0886-3 [16] STEIN A, STARITSKY I, BOUMA J, et al. Interactive GIS for environmental risk assessment[J]. International Journal of Geographical Information Systems,1995,9(5):509-525. doi: 10.1080/02693799508902053 [17] HAN R R, ZHOU B H, AN L Y, et al. Quantitative assessment of enterprise environmental risk mitigation in the context of Na-tech disasters[J]. Environmental Monitoring and Assessment,2019,191(4):210. doi: 10.1007/s10661-019-7351-1 [18] HUANG L, WAN W B, LI F Y, et al. A two-scale system to identify environmental risk of chemical industry clusters[J]. Journal of Hazardous Materials,2011,186(1):247-255. doi: 10.1016/j.jhazmat.2010.10.117 [19] 田园. 基于层次分析法的化工企业环境风险评价研究[D]. 大连: 大连理工大学, 2015. [20] SAVARD M. Modelling risk, trade, agricultural and environmental policies to assess trade-offs between water quality and welfare in the hog industry[J]. Ecological Modelling,2000,125(1):51-66. doi: 10.1016/S0304-3800(99)00173-8 [21] SAATY T L. What is the analytic hierarchy process[M]//Mathematical Models for Decision Support. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988: 109-121. [22] 朱坚平, 张丽, 韩辉.沿江区域事故风险评估风险因子研究[J]. 工业安全与环保,2011,37(6):4-5. doi: 10.3969/j.issn.1001-425X.2011.06.002ZHU J P, ZHANG L, HAN H. Study on the risk factor in regional accident risk assessment along the Yangtze River[J]. Industrial Safety and Environmental Protection,2011,37(6):4-5. doi: 10.3969/j.issn.1001-425X.2011.06.002 [23] 生态环境部. 建设项目环境风险评价技术导则: HJ 169—2018[S]. 北京: 中国环境科学出版社, 2018. [24] 环境保护部, 国家质量监督检验检疫总局. 企业突发环境事件风险分级方法: HJ 941—2018[S]. 北京: 中国环境科学出版社, 2018. [25] 李艳萍, 乔琦, 柴发合, 等.基于层次分析法的工业园区环境风险评价指标权重分析[J]. 环境科学研究,2014,27(3):334-340.LI Y P, QIAO Q, CHAI F H, et al. Study on environmental risk assessment index weight of industrial park based on the analytic hierarchy Process[J]. Research of Environmental Sciences,2014,27(3):334-340. [26] 常杪, 黄泳锋, 李冬溦, 等.基于“检查表-层次分析法”的贵州省工业园区环境风险评价方法研究[J]. 四川环境,2015,34(4):121-127. doi: 10.3969/j.issn.1001-3644.2015.04.022CHANG M A, HUANG Y F, LI D W, et al. Study on environment risk assessment and management of industrial park in Guizhou Province based on the checklist- analytic hierarchy[J]. Sichuan Environment,2015,34(4):121-127. doi: 10.3969/j.issn.1001-3644.2015.04.022 [27] 郭丽娟, 袁鹏, 宋永会, 等.化工园区企业环境风险分级管理研究[J]. 环境工程技术学报,2011,1(5):403-408. doi: 10.3969/j.issn.1674-991X.2011.05.067GUO L J, YUAN P, SONG Y H, et al. Environmental risk classification and management for chemical industry[J]. Journal of Environmental Engineering Technology,2011,1(5):403-408. doi: 10.3969/j.issn.1674-991X.2011.05.067 [28] 金伟成, 吴俊杰, 解明媛.沿江工业园区环境风险管理探讨[J]. 污染防治技术,2014,27(3):84-87.JIN W C, WU J J, XIE M Y. Investigation on the environmental risk management in the industrial park along Yangtze River[J]. Pollution Control Technology,2014,27(3):84-87. □