Evaluation of ecological resilience of Hanjiang River Basin based on vegetation index
-
摘要: 基于2001—2020年各年度增强型植被指数(enhanced vegetation index, EVI)数据,分析汉江流域植被覆盖变化情况,并计算汉江流域15万个1 km×1 km基本单元的2001—2010年、2001—2011年、2001—2012年直至2001—2020年的EVI变化斜率,采用指数衰减方法拟合EVI变化斜率维持正、负趋势的时间,分析汉江全流域以及564个子流域的系统恢复力,评估生态系统稳定性以及可持续发展程度。结果表明:2001—2020年,汉江流域EVI增长了12.3%,流域植被覆盖情况在逐渐变好;汉江流域整体生态恢复力较好,拟合得出维持正趋势的基本单元与维持负趋势的基本单元衰减时间差为65.3年;汉江流域生态恢复力总体上呈现上游高、中下游低的分布特征。Abstract: Based on the Enhanced Vegetation Index (EVI) data of each year from 2001 to 2020, the change of vegetation cover in the Hanjiang River Basin was analyzed, and the slope of EVI change of 150000 1 km×1 km basic units was calculated in 2001-2010, 2001-2011, 2001-2012 and 2001-2020 in the Han River Basin. The exponential decay method was used to fit the time when the change slope of EVI maintained a positive and negative trend, and the ecological resilience of the whole Hanjiang River Basin and 564 sub-basins was analyzed to evaluate the stability and sustainable development level of the ecosystem. The results showed that the EVI value of Hanjiang River Basin increased by 12.3% from 2001 to 2020, and the vegetation coverage of Hanjiang River Basin was getting better year by year. The overall ecological resilience of Hanjiang River Basin was good, and the decay time difference between the grid with a positive trend and the grid with a negative trend was 65.3 years. The ecological resilience of Hanjiang River Basin generally presented the distribution characteristics of high in the upper reaches and low in the middle and lower reaches.
-
Key words:
- Hanjiang River Basin /
- ecological resilience /
- exponential decay /
- vegetation coverage
-
表 1 汉江流域EVI维持性栅格数量统计
Table 1. Quantity statistics of EVI maintained grid in Hanjiang River Basin
年份 维持正趋势 维持负趋势 栅格数量 占比/% 栅格数量 占比/% 2010 136958 100 12288 100 2011 132387 96.66 9476 77.12 2012 129843 94.80 7632 62.11 2013 128058 93.50 6420 52.25 2014 125092 91.34 5867 47.75 2015 123332 90.05 5573 45.35 2016 122195 89.22 5097 41.48 2017 121379 88.62 4783 38.92 2018 120649 88.09 4512 36.72 2019 119809 87.48 4355 35.44 2020 118690 86.66 4259 34.66 表 2 汉江子流域生态恢复力等级统计
Table 2. Grade statistics of ecological resilience of sub-watershed of the Hanjiang River
生态恢复力排名 生态恢复力等级 面积/km2 1~150 极好 36 221.52 151~300 较好 49 204.85 301~467 一般 46 081.00 468~510 较差 9 322.57 511~564 极差 9 513.04 合计 150342.97 -
[1] HOLLING C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics,1973,4(1):1-23. doi: 10.1146/annurev.es.04.110173.000245 [2] WOHLGEMUTH T, MORETTI M, CONEDERA M, et al. Ecological resilience after fire in mountain forests of the Central Alps[J]. Forest Ecology and Management,2006,234(Supp l):S200. [3] CAMPOS G P, MORAN M S, HUETE A, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J]. Nature,2013,494(7437):349-352. doi: 10.1038/nature11836 [4] OSTROM E. Going beyond panaceas special feature: a diagnostic approach for going beyond panaceas[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(39):15181-15187. doi: 10.1073/pnas.0702288104 [5] SCHEFFER M, BROCK W, WESTLEY F. Socioeconomic mechanisms preventing optimum use of ecosystem services: an interdisciplinary theoretical analysis[J]. Ecosystems,2000,3(5):451-471. doi: 10.1007/s100210000040 [6] NORBERG J, WILSON J, WALKER B, et al. Diversity and resilience of social-ecological systems[M]. New York: Columbia University Press, 2008. [7] STH J, REGGIANI A, GALIAZZO G. Spatial economic resilience and accessibility: a joint perspective[J]. Computers Environment and Urban Systems,2015,49:148-159. doi: 10.1016/j.compenvurbsys.2014.07.007 [8] COWELL M M. Bounce back or move on: regional resilience and economic development planning[J]. Cities,2013,30:212-222. doi: 10.1016/j.cities.2012.04.001 [9] MARTIN R. Regional economic resilience, hysteresis and recessionary shocks[J]. Journal of Economic Geography,2012,12(1):1-32. doi: 10.1093/jeg/lbr019 [10] ADGER W N. Social and ecological resilience: are they related[J]. Progress in Human Geography,2000,24(3):347-364. doi: 10.1191/030913200701540465 [11] ALBERTI M, MARZLUFF J M. Ecological resilience in urban ecosystems: linking urban patterns to human and ecological functions[J]. Urban Ecosystems,2004,7(3):241-265. doi: 10.1023/B:UECO.0000044038.90173.c6 [12] 王莹, 李道亮.煤矿废弃地植被恢复潜力评价模型[J]. 中国农业大学学报,2005(2):88-92. doi: 10.3321/j.issn:1007-4333.2005.02.020WANG Y, LI D L. A potentiality evaluation model for revegetation of abandoned lands from coal mining activities[J]. Journal of China Agricultural University,2005(2):88-92. doi: 10.3321/j.issn:1007-4333.2005.02.020 [13] 刘婧, 史培军, 葛怡, 等.灾害恢复力研究进展综述[J]. 地球科学进展,2006,21(2):211-218. doi: 10.3321/j.issn:1001-8166.2006.02.014 [14] 费璇, 温家洪, 杜士强, 等.自然灾害恢复力研究进展[J]. 自然灾害学报,2014,23(6):19-31.FEI X, WEN J H, DU S Q, et al. Progress in research on natural disaster resilience[J]. Journal of Natural Disasters,2014,23(6):19-31. [15] 孙晶, 王俊, 杨新军.社会-生态系统恢复力研究综述[J]. 生态学报,2007,27(12):5371-5381. doi: 10.3321/j.issn:1000-0933.2007.12.050SUN J, WANG J, YANG X J. An overview on the resilience of social-ecological systems[J]. Acta Ecologica Sinica,2007,27(12):5371-5381. doi: 10.3321/j.issn:1000-0933.2007.12.050 [16] 闫海明, 战金艳, 张韬.生态系统恢复力研究进展综述[J]. 地理科学进展,2012,31(3):303-314. doi: 10.11820/dlkxjz.2012.03.005 [17] 高江波, 赵志强, 李双成.基于地理信息系统的青藏铁路穿越区生态系统恢复力评价[J]. 应用生态学报,2008,19(11):2473-2479. [18] 陈琼.国家生态区漳州市龙文区植被恢复评价[J]. 江苏林业科技,2021,48(3):9-12. doi: 10.3969/j.issn.1001-7380.2021.03.003CHEN Q. Vegetation restoration in the National Ecological Region, Longwen District of Zhangzhou City[J]. Journal of Jiangsu Forestry Science & Technology,2021,48(3):9-12. doi: 10.3969/j.issn.1001-7380.2021.03.003 [19] 李昕.辽河流域水资源可持续性评价方法研究[J]. 水利规划与设计,2018(12):46-49. doi: 10.3969/j.issn.1672-2469.2018.12.013 [20] 刘东, 徐磊, 朱伟峰.基于最优组合赋权和改进TOPSIS模型的区域农业水资源恢复力评价[J]. 东北农业大学学报,2019,50(6):86-96. doi: 10.3969/j.issn.1005-9369.2019.06.010LIU D, XU L, ZHU W F. Evaluation of regional agricultural water resource resilience based on optimal combination determining weight method and improved TOPSIS model[J]. Journal of Northeast Agricultural University,2019,50(6):86-96. doi: 10.3969/j.issn.1005-9369.2019.06.010 [21] 谷洪波, 李晶云, 唐铠.湖南省农业洪涝灾后恢复力评价指标体系及其应用[J]. 沈阳农业大学学报(社会科学版),2013,15(3):270-274. [22] 冯建平. 区域洪水灾害恢复力测度及其对农业种植结构影响效应研究[D]. 长春: 东北农业大学, 2020. [23] 翟羽佳, 王丽婧, 郑丙辉, 等.基于系统仿真模拟的三峡库区生态承载力分区动态评价[J]. 环境科学研究,2015,28(4):559-567.ZHAI Y J, WANG L J, ZHENG B H, et al. Dynamic zoned assessment of ecological carrying capacity of Three Gorges Reservoir Area based on system simulation[J]. Research of Environmental Sciences,2015,28(4):559-567. [24] 杨春艳, 高艳妮, 刘学, 等.辽河保护区植被覆盖度时空动态变化及驱动因素[J]. 环境工程技术学报,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030YANG C Y, GAO Y N, LIU X, et al. Spatial-temporal dynamic change of fractional vegetation coverage and its driving factors in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology,2020,10(4):545-552. doi: 10.12153/j.issn.1674-991X.20200030 [25] 耿艺伟, 陈伟强, 张金鑫, 等.河南省沿黄干流地区社会-生态-生产景观恢复力演化特征及情景模拟[J]. 水土保持通报,2021,41(5):1-10.GENG Y W, CHEN W Q, ZHANG J X, et al. Evolution characteristics and scenario simulation of social-ecological production landscape resilience in areas along mainstream of Yellow River in He’nan Province[J]. Bulletin of Soil and Water Conservation,2021,41(5):1-10. [26] 汤宇磊, 吴杨杨, 蒋兴征, 等.面向自然资源信息提取的多源异构数据融合技术: 以汉江流域NDVI数据为例[J]. 中国地质调查,2021,8(2):74-82.TANG Y L, WU Y Y, JIANG X Z, et al. Multi-source heterogeneous data fusion technology for natural resource information extraction: a case study of NDVI data in Hanjiang Basin[J]. Geological Survey of China,2021,8(2):74-82. ⊗