Denitrification performance of bamboo shavings-iron coupled system for low C/N ration wastewater
-
摘要:
针对低碳氮比污水中总氮(TN)去除率低的问题,以纤维状竹刨花为固体碳源,单质铁粉为铁源,利用二者的耦合作用进行脱氮。通过静态反硝化试验考察不同铁碳质量比(Fe/C)对NO3 −-N去除效果的影响,确定耦合体系适宜的Fe/C;在此基础上,设置单纯竹刨花对照组(1#试验组)与耦合填料试验组(2#试验组)动态反硝化试验,研究其脱氮性能。结果表明:静态试验中,加入铁粉的耦合体系NO3 −-N去除率均高于单纯竹刨花体系,但当Fe/C大于 0.125∶1时,NO3 −-N去除率提升不显著,综合考虑反硝化效果与成本,确定动态试验耦合填料Fe/C为 0.125∶1。动态试验中,进水总有机碳浓度低于2 mg/L,TN浓度为(40.93±2.04) mg/L,水力停留时间为18 h时,1#和2#试验组运行约10 d后脱氮效能趋于稳定。12~81 d,2组出水总有机碳浓度均较低,1#、2#试验组TN平均去除率分别为33%和76%,2#试验组的TN去除率相比1#试验组提高了129%;两组均有一定的NO2 −-N积累,但2#试验组的NO2 −-N浓度相比1#试验组低约47%;2#试验组出水总铁平均浓度低于GB 3838—2002《地表水环境质量标准》限值,未出现铁过量释放与NH3-N明显积累。总之,竹刨花-铁耦合体系脱氮效能优异,脱氮过程二次影响低。我国竹资源丰富,铁来源广泛,竹刨花-铁耦合体系可用于低碳氮比生活污水中TN的去除。
Abstract:To address the problem of insufficient removal of total nitrogen (TN) from low C/N ratio effluent, fibrous bamboo shavings were used as a solid carbon source and elemental iron powder as an iron source, and the coupling of the two materials was used for nitrogen removal. Static denitrification experiments were conducted to investigate the effect of different Fe/C mass ratios on nitrate-nitrogen (NO3 −-N) removal and to determine the appropriate Fe/C ratio for the coupled system. On this basis, the dynamic denitrification test was divided into a control group of simple bamboo shavings (1#) and a test group of coupled fillers (2#) to study their denitrification performance. The results of static tests showed that the NO3 −-N removal rate of the coupled system with the addition of iron powder was higher than that of the simple bamboo shavings system, but when Fe/C was greater than 0.125: 1, the improvement of NO3 −-N removal was not significant. Taking into account the denitrification effect and cost, Fe/C ratio of the coupled fillers in the dynamic test was determined to be 0.125∶1. The dynamic test results showed that, when the influent TOC was <2 mg/L , TN was (40.93±2.04) mg/L, and hydraulic retention time of 18 h, the denitrification efficiency of 1# and 2# stabilized after running about 10 d. 12-81 d, the effluent TOC of both groups were low, and the average TN removal rates of 1# and 2# were 32.99% and 75.58%, respectively, and TN removal rate of 2# increased by 129% higher than that of 1#; both groups had some nitrite nitrogen (NO2 −-N) accumulation, but the NO2 −-N concentration of 2# was about 47% lower than that of 1#; the average concentration of total iron in the effluent of 2# was lower than the limit value of Surface Water Environmental Quality Standard (GB 3838-2002), and there was no excessive iron release and obvious ammonia nitrogen (NH3-N) accumulation. In conclusion, the bamboo shavings-iron coupled system has significant denitrification efficiency and low secondary effects. China is rich in bamboo resources and has a wide source of iron, and the bamboo shavings-iron coupled system can be used for TN removal of low C/N ratio domestic wastewater.
-
Key words:
- bamboo shavings /
- iron powder /
- denitrification /
- solid carbon source /
- coupled system
-
表 1 微量元素溶液中物质组成
Table 1. Trace element composition in trace element solution
mg/L ZnSO4·7H2O MgSO4·7H2O KI CoCl2·6H2O CaCl2 MnCl2 120 20 30 30 30 20 -
[1] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management,2019,246:832-839. [2] LIU D Z, LI J W, LI C W, et al. Poly(butylene succinate)/bamboo powder blends as solid-phase carbon source and biofilm carrier for denitrifying biofilters treating wastewater from recirculating aquaculture system[J]. Scientific Reports,2018,8:3289. doi: 10.1038/s41598-018-21702-5 [3] WANG T, WANG H Y, CHANG Y, et al. Enhanced nutrients removal using reeds straw as carbon source in a laboratory scale constructed wetland[J]. International Journal of Environmental Research and Public Health,2018,15(6):1081. doi: 10.3390/ijerph15061081 [4] YU L J, CHEN T, XU Y H. Effect of corn cobs as external carbon sources on nitrogen removal in constructed wetlands treating micro-polluted river water[J]. Water Science & Technology,2019,79(9):1639-1647. doi: 10.2166/wst.2019.156 [5] 凌宇, 赵远哲, 王海燕, 等.HRT对A/O-BF处理低碳氮比农村生活污水脱氮的影响[J]. 环境科学研究,2021,34(4):927-935. doi: 10.13198/j.issn.1001-6929.2020.12.12LING Y, ZHAO Y Z, WANG H Y, et al. Effects of HRT on A/O-BF nitrogen removal of low C/N rural domestic sewage[J]. Research of Environmental Sciences,2021,34(4):927-935. doi: 10.13198/j.issn.1001-6929.2020.12.12 [6] 郑冰冰, 吴怡伟, 李云辉, 等.不同碳氮比对海水养殖废水脱氮效果的影响[J]. 环境科学研究,2020,33(8):1848-1856. doi: 10.13198/j.issn.1001-6929.2020.03.02ZHENG B B, WU Y W, LI Y H, et al. Effect of different C/N ratio on nitrogen removal of mariculture wastewater[J]. Research of Environmental Sciences,2020,33(8):1848-1856. doi: 10.13198/j.issn.1001-6929.2020.03.02 [7] ZHOU B B, DUAN J J, XUE L H, et al. Effect of plant-based carbon source supplements on denitrification of synthetic wastewater: focus on the microbiology[J]. Environmental Science and Pollution Research International,2019,26(24):24683-24694. doi: 10.1007/s11356-019-05454-x [8] 张恒亮, 朱铁群, 王海燕, 等.芦苇碳源投加量对表面流人工湿地中试系统强化脱氮启动的影响[J]. 环境工程技术学报,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047ZHANG H L, ZHU T Q, WANG H Y, et al. Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland[J]. Journal of Environmental Engineering Technology,2017,7(3):332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047 [9] LI Y Y, WANG S, LI Y, et al. Corn straw as a solid carbon source for the treatment of agricultural drainage water in horizontal subsurface flow constructed wetlands[J]. Water,2018,10(4):511. doi: 10.3390/w10040511 [10] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure[J]. Bioresource Technology,2018,267:416-425. doi: 10.1016/j.biortech.2018.07.029 [11] LING Y, YAN G K, WANG H Y, et al. Release mechanism, secondary pollutants and denitrification performance comparison of six kinds of agricultural wastes as solid carbon sources for nitrate removal[J]. International Journal of Environmental Research and Public Health,2021,18(3):1232. doi: 10.3390/ijerph18031232 [12] GUAN X X, JI G X, XU S Y, et al. Selection of agricultural straws as sustained-release carbon source for denitrification in a drawer-type biological filter[J]. Water, Air, & Soil Pollution,2019,230(1):1-11. [13] SÁNCHEZ M P, SULBARÁN-RANGEL B C, TEJEDA A, et al. Evaluation of three lignocellulosic wastes as a source of biodegradable carbon for denitrification in treatment wetlands[J]. International Journal of Environmental Science and Technology,2020,17(12):4679-4692. doi: 10.1007/s13762-020-02815-9 [14] 辜夕容, 邓雪梅, 刘颖旎, 等.竹废弃物的资源化利用研究进展[J]. 农业工程学报,2016,32(1):236-242. doi: 10.11975/j.issn.1002-6819.2016.01.033GU X R, DENG X M, LIU Y N, et al. Review on comprehensive utilization of bamboo residues[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(1):236-242. doi: 10.11975/j.issn.1002-6819.2016.01.033 [15] BUCCO S, PADOIN N, NETTO W S, et al. Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source[J]. Bioprocess and Biosystems Engineering,2014,37(10):2009-2017. doi: 10.1007/s00449-014-1176-7 [16] WANG Y M. Bamboo as solid carbon source for de-nitrification[J]. Advanced Materials Research,2013,807/808/809:1330-1335. [17] ZHANG Y B, FENG Y H, YU Q L, et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron[J]. Bioresource Technology,2014,159:297-304. doi: 10.1016/j.biortech.2014.02.114 [18] 杨燕, 朱静平.添加零价铁的反硝化系统中发生的主要反应[J]. 工业水处理,2021,41(3):77-82.YANG Y, ZHU J P. Main reactions in denitrification system with zero valent iron addition[J]. Industrial Water Treatment,2021,41(3):77-82. [19] ZHANG F F, MA C J, HUANG X F, et al. Research progress in solid carbon source-based denitrification technologies for different target water bodies[J]. Science of the Total Environment,2021,782:146669. doi: 10.1016/j.scitotenv.2021.146669 [20] ZHANG J M, FENG C P, HONG S Q, et al. Behavior of solid carbon sources for biological[J]. Water Science & Technology,2012,65(9):1696-1704. [21] 杨清培, 欧阳明, 杨光耀, 等.竹子生态化学计量学研究: 从生物学基础到竹林培育学应用[J]. 植物生态学报,2016,40(3):264-278. doi: 10.17521/cjpe.2015.0298YANG Q P, OUYANG M, YANG G Y, et al. Research on ecological stoichiometry in bamboos: from biological basis to applications in silviculture of bamboo forests[J]. Chinese Journal of Plant Ecology,2016,40(3):264-278. doi: 10.17521/cjpe.2015.0298 [22] 张红爱, 黄宁辉, 莫家勇, 等.广东毛竹碳含量测定分析[J]. 林业与环境科学,2017,33(3):20-23. doi: 10.3969/j.issn.1006-4427.2017.03.004ZHANG H A, HUANG N H, MO J Y, et al. Determination and analysis of carbon content of Phyllostachys pubescens in Guangdong Province[J]. Forestry and Environmental Science,2017,33(3):20-23. doi: 10.3969/j.issn.1006-4427.2017.03.004 [23] 邵媛媛. 高效脱氮菌强化人工湿地处理村镇生活污水工艺研究[D]. 济南: 山东大学, 2014. [24] 熊家晴, 孙建民, 郑于聪, 等.植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理,2018,38(9):41-44. doi: 10.11894/1005-829x.2018.38(9).041XIONG J Q, SUN J M, ZHENG Y C, et al. Influences of solid plant carbon source addition on the denitrification effect in constructed wetland[J]. Industrial Water Treatment,2018,38(9):41-44. doi: 10.11894/1005-829x.2018.38(9).041 [25] 王玥, 秦帆, 唐燕华, 等.农业废弃物作为反硝化脱氮外加碳源的研究[J]. 林业工程学报,2019,4(5):146-151.WANG Y, QIN F, TANG Y H, et al. Agricultural wastes as additional carbon sources for denitrification[J]. Journal of Forestry Engineering,2019,4(5):146-151. [26] SUN G P, WAN J F, SUN Y C, et al. Enhanced removal of nitrate and refractory organic pollutants from bio-treated coking wastewater using corncobs as carbon sources and biofilm carriers[J]. Chemosphere,2019,237:124520. doi: 10.1016/j.chemosphere.2019.124520 [27] HARTZ T, SMITH R, CAHN M, et al. Wood chip denitrification bioreactors can reduce nitrate in tile drainage[J]. California Agriculture,2017,71(1):41-47. doi: 10.3733/ca.2017a0007 [28] YIN W Z, WU J H, LI P, et al. Reductive transformation of pentachloronitrobenzene by zero-valent iron and mixed anaerobic culture[J]. Chemical Engineering Journal,2012,210:309-315. doi: 10.1016/j.cej.2012.09.003 [29] 王海燕, 赵远哲, 王文富, 等.人工湿地脱氮影响因素及强化措施研究进展[J]. 环境工程技术学报,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150WANG H Y, ZHAO Y Z, WANG W F, et al. A review of influencing factors and enhanced measures for nitrogen removal of constructed wetlands[J]. Journal of Environmental Engineering Technology,2020,10(4):585-597. doi: 10.12153/j.issn.1674-991X.20190150 [30] 邵留, 徐祖信, 金伟, 等.以稻草为碳源和生物膜载体去除水中的硝酸盐[J]. 环境科学,2009,30(5):1414-1419. doi: 10.3321/j.issn:0250-3301.2009.05.027SHAO L, XU Z X, JIN W, et al. Nitrate removal from wastewater using rice straw as carbon source and biofilm carrier[J]. Environmental Science,2009,30(5):1414-1419. doi: 10.3321/j.issn:0250-3301.2009.05.027 [31] 王子杰, 王郑, 林子增, 等.反硝化生物滤池在污水处理中的应用研究进展[J]. 应用化工,2018,47(8):1727-1731. doi: 10.3969/j.issn.1671-3206.2018.08.040WANG Z J, WANG Z, LIN Z Z, et al. Research progress on application of denitrification biological filter in sewage treatment[J]. Applied Chemical Industry,2018,47(8):1727-1731. doi: 10.3969/j.issn.1671-3206.2018.08.040 [32] 孙雅丽, 张国臣, 阎中, 等.以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学,2010,31(6):1494-1498.SUN Y L, ZHANG G C, YAN Z, et al. Removing nitrate-nitrogen from wastewater using rotten wood as carbon source[J]. Environmental Science,2010,31(6):1494-1498. [33] 李斌, 郝瑞霞.固体纤维素类废物作为反硝化碳源滤料的比选[J]. 环境科学,2013,34(4):1428-1434.LI B, HAO R X. Comparison and optimization of cellulose carbon source for denitrification filter[J]. Environmental Science,2013,34(4):1428-1434. [34] JIA L X, GOU E F, LIU H, et al. Exploring utilization of recycled agricultural biomass in constructed wetlands: characterization of the driving force for high-rate nitrogen removal[J]. Environmental Science & Technology,2019,53(3):1258-1268. [35] 张雅君, 吕静静, 孙丽华, 等.不同硝酸盐浓度对再生水管网腐蚀状况的影响[J]. 腐蚀科学与防护技术,2018,30(3):259-265. doi: 10.11903/1002.6495.2017.229ZHANG Y J, LÜ J J, SUN L H, et al. Influence of nitrate concentration on corrosion of reclaimed water pipe network[J]. Corrosion Science and Protection Technology,2018,30(3):259-265. doi: 10.11903/1002.6495.2017.229 [36] 曹晓敏, 李晨曦, 齐晗兵, 等.零价铁耦合厌氧微生物法在废水处理中的应用[J]. 化学通报,2021,84(4):365-371.CAO X M, LI C X, QI H B, et al. Application of zero-valent iron coupled anaerobic biological method in wastewater treatment[J]. Chemistry,2021,84(4):365-371. [37] ETIQUE M, JORAND F P A, ZEGEYE A, et al. Abiotic process for Fe(Ⅱ) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis)[J]. Environmental Science & Technology,2014,48(7):3742-3751. [38] WANG C, XU Y, HOU J, et al. Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: performance and potential mechanisms[J]. Science of the Total Environment,2019,689:1044-1053. doi: 10.1016/j.scitotenv.2019.06.488 [39] ZHU L, GAO K T, JIN J, et al. Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system[J]. Environmental Science and Pollution Research International,2014,21(22):12747-12756. doi: 10.1007/s11356-014-3215-y [40] 李园怡, 李杰.Fe0-生物铁法中铁的微生物腐蚀机理研究进展[J]. 绿色科技,2019(8):50-52.LI Y Y, LI J. Research progress on microbial corrosion mechanism of iron in Fe0-biometric iron method[J]. Journal of Green Science and Technology,2019(8):50-52. [41] XU Y, WANG C, HOU J, et al. Application of zero valent iron coupling with biological process for wastewater treatment: a review[J]. Reviews in Environmental Science and Bio/Technology,2017,16(4):667-693. ◇ doi: 10.1007/s11157-017-9445-y