Research on calculation method of ecological flow of Rangdu River based on SWAT model
-
摘要: 保障和管理河湖生态流量是加强水资源开发利用管控的基本要求,是实施长江大保护和高质量发展的重要内容。以瀼渡河为例,提出了针对无实测流量的河流推算生态流量的方法。首先,利用SWAT水文模型模拟得到1990—2019年30年逐月流量过程,表明该河流流量由上游至下游逐渐增大,且具有明显的汛期和非汛期特征;其次,采用蒙大拿法、最小月平均流量法、近10年最枯月平均流量法和流量历时曲线法4种水文学计算方法,选取瀼渡河干流重点控制断面进行生态流量计算,结果表明生态流量计算值介于10%~33%,呈现出流量历时曲线法>近10年最枯月平均流量法>最小月平均流量法>蒙大拿法的趋势;最后,经水质达标校核,分析得出瀼渡河生态流量计算推荐方法为流量历时曲线法,年补水径流量约占年均径流量的30%。Abstract: Ensuring and managing the ecological flow of rivers and lakes is an essential requirement for strengthening the management and control of the development and utilization of water resources, and is an important part of the implementation of "Great Protection of the Yangtze River" and "high-quality development". A method for calculating ecological flow of rivers without measured runoff was proposed, with the Rangdu River taken as an example. Firstly, the monthly runoff process from 1990 to 2019 was simulated by SWAT hydrological model. The results showed that the runoff gradually increased from upstream to downstream, and presented obvious characteristics of flood season and non-flood season. Secondly, the ecological flow of the key control sections in the mainstream was calculated by four hydrological methods, e.g. Tennant method, minimum monthly average flow method, driest monthly average flow method in recent 10 years, and flow-duration curve method. The calculated ecological flow ranged from 10% to 33%, with the calculated flow trend in the order of flow-duration curve method > driest monthly average flow method in recent 10 years > minimum monthly average flow method >Tennant method. Finally, through water quality compliance accounting, it was concluded that the recommended method for calculating the ecological flow in the river was the flow-duration curve method, accounting for about 30% of the average annual flow.
-
表 1 乡镇与河网断面对应关系
Table 1. Correspondence of township and river network sections
乡镇名称 对应控制断面 李河镇 5 分水镇 17 柱山乡 18 龙沙镇 32 甘宁镇 36 瀼渡镇 38 注:控制断面编号与子流域编号一致。 表 2 蒙大拿法生态流量计算结果
Table 2. Calculation results of ecological flow by Tennant method
控制
断面多年平均
天然流量/
(m3/s)生态流量/(m3/s) 年均基本
生态流量/
(m3/s)占多年平均
天然流量的
比例/%10月—次年5月 6—9月 5 0.69 0.05 0.11 0.07 10.00 17 2.69 0.20 0.42 0.27 10.00 18 3.16 0.23 0.49 0.32 10.00 32 4.16 0.30 0.64 0.42 10.00 36 4.46 0.32 0.69 0.45 10.00 38 4.64 0.34 0.72 0.46 10.00 表 3 最小月平均流量法生态流量计算结果
Table 3. Calculation results of basic ecological flow by the minimum monthly average flow method
控制断面 多年平均天然
流量/(m3/s)年均基本生态
流量/(m3/s)占多年平均天然
流量的比例/%5 0.69 0.11 15.91 17 2.69 0.43 16.06 18 3.16 0.51 16.01 32 4.16 0.76 18.26 36 4.46 0.80 17.82 38 4.64 0.82 17.62 表 4 近10年最枯月平均流量法生态流量计算结果
Table 4. Calculation results of ecological flow based on the driest monthly average flow method in recent 10 years
控制断面 多年平均天然
流量/(m3/s)年均基本生态
流量/(m3/s)占多年平均天然
流量的比例/%5 0.69 0.12 17.33 17 2.69 0.47 17.28 18 3.16 0.54 17.19 32 4.16 0.79 19.01 36 4.46 0.83 18.67 38 4.64 0.86 18.50 表 5 流量历时曲线法生态流量计算结果
Table 5. Calculation results of ecological flow by flow-duration curve method
控制
断面多年平均
天然流量/
(m3/s)基本生态流量/(m3/s) 年均基本
生态流量/
(m3/s)占多年平均
天然流量的
比例/%10月—次年5月 6—9月 5 0.69 0.163 0.339 0.22 32.23 17 2.69 0.647 1.357 0.88 32.78 18 3.16 0.758 1.619 1.05 33.08 32 4.16 1.069 1.965 1.37 32.88 36 4.46 1.137 2.044 1.44 32.23 38 4.64 1.265 2.089 1.54 33.18 表 6 1990—2019年瀼渡河流域总磷指标现状及基本生态流量计算结果
Table 6. TP indicator status from 1990 to 2019 and basic ecological flow calculation results
控制
断面年径流量/
(108 m3)总磷浓度
最大值/
(mg/L)总磷浓度
超标倍数1)Ⅱ类水补水
径流量/
(108 m3)占年径
流量的
比例/%5 0.217 0.247 0.235 0.102 14 17 0.850 0.260 0.301 0.512 30 18 0.268 0.262 0.312 0.086 12 32 0.085 0.104 36 1.408 0.114 38 1.463 0.118 1)为GB 3838—2002《国家地表水环境质量标准》Ⅲ类水质标准超标倍数。 -
[1] 周明华, 胡波.对水资源过度开发的一些思考[J]. 科技资讯,2019,17(26):56-57. [2] 李昌文. 基于改进Tennant法和敏感生态需求的河流生态需水关键技术研究[D]. 武汉: 华中科技大学, 2015. [3] 徐宗学, 武玮, 于松延.生态基流研究: 进展与挑战[J]. 水力发电学报,2016,35(4):1-11. doi: 10.11660/slfdxb.20160401XU Z X, WU W, YU S Y. Ecological baseflow: progress and challenge[J]. Journal of Hydroelectric Engineering,2016,35(4):1-11. doi: 10.11660/slfdxb.20160401 [4] 王鸿翔, 张爱民, 郭文献, 等.基于生态水文法的城市河流生态基流综合评估[J]. 中国农村水利水电,2017(7):67-71.WANG H X, ZHANG A M, GUO W X, et al. A comprehensive assessment based on eco-hydrological method for ecological basic flow of urban rivers[J]. China Rural Water and Hydropower,2017(7):67-71. [5] 张建永, 王晓红, 杨晴, 等.全国主要河湖生态需水保障对策研究[J]. 中国水利,2017(23):8-11. doi: 10.3969/j.issn.1000-1123.2017.23.004ZHANG J Y, WANG X H, YANG Q, et al. Study on safeguard measures of ecological water demand for major rivers and lakes in China[J]. China Water Resources,2017(23):8-11. doi: 10.3969/j.issn.1000-1123.2017.23.004 [6] 陈昂, 隋欣, 廖文根, 等.我国河流生态基流理论研究回顾[J]. 中国水利水电科学研究院学报,2016,14(6):401-411.CHEN A, SUI X, LIAO W G, et al. Review study on instream ecological base flow in China[J]. Journal of China Institute of Water Resources and Hydropower Research,2016,14(6):401-411. [7] 吴喜军, 李怀恩, 董颖, 等. 基于基流比例法的渭河生态基流计算[J]. 农业工程学报, 2011, 27(10): 154-159.WU X J, LI H E, DONG Y, et al. Calculation of ecological basic flow of Weihe River based on basic flow ratio method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 154-159. [8] 金婧靓, 王飞儿.SWAT模型及其应用与改进的研究进展[J]. 东北林业大学学报,2010,38(12):111-114. doi: 10.3969/j.issn.1000-5382.2010.12.035JIN J L, WANG F E. Research progress on SWAT model and its application and improvement[J]. Journal of Northeast Forestry University,2010,38(12):111-114. doi: 10.3969/j.issn.1000-5382.2010.12.035 [9] 李峰, 胡铁松, 黄华金.SWAT模型的原理、结构及其应用研究[J]. 中国农村水利水电,2008(3):24-28. [10] 王中根, 刘昌明, 黄友波.SWAT模型的原理、结构及应用研究[J]. 地理科学进展,2003,22(1):79-86. doi: 10.3969/j.issn.1007-6301.2003.01.010WANG Z G, LIU C M, HUANG Y B. The theory of SWAT model and its application in Heihe Basin[J]. Progress in Geography,2003,22(1):79-86. doi: 10.3969/j.issn.1007-6301.2003.01.010 [11] YOUNG R A, ONSTAD C A, BOSCH D D, et al. AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds[J]. Journal of Soil And Water Conservation,1989,44(2):168-173. [12] 郭军庭, 张志强, 王盛萍, 等.应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报,2014,34(6):1559-1567.GUO J T, ZHANG Z Q, WANG S P, et al. Appling SWAT model to explore the impact of changes in land use and climate on the streamflow in a Watershed of Northern China[J]. Acta Ecologica Sinica,2014,34(6):1559-1567. [13] 荣易, 秦成新, 孙傅, 等.SWAT模型在我国流域水环境模拟应用中的评估验证过程评价[J]. 环境科学研究,2020,33(11):2571-2580.RONG Y, QIN C X, SUN F, et al. Assessment of evaluation process of SWAT model application in China[J]. Research of Environmental Sciences,2020,33(11):2571-2580. [14] 翟玥, 尚晓, 沈剑, 等.SWAT模型在洱海流域面源污染评价中的应用[J]. 环境科学研究,2012,25(6):666-671.ZHAI Y, SHANG X, SHEN J, et al. Application of SWAT model in agricultural non-point source pollution investigation in Lake Erhai Watershed[J]. Research of Environmental Sciences,2012,25(6):666-671. [15] 凌冰, 刘晓波, 黄伟, 等.基于水文模型的缺资料流域缺水特征分析: 以岷江茫溪河流域为例[J]. 环境工程技术学报,2021,11(2):241-248. doi: 10.12153/j.issn.1674-991X.20200245LING B, LIU X B, HUANG W, et al. Analysis of water scarcity characteristics in data-deficient watersheds based on hydrological model: taking Minjiang Tributary Mangxi River Basin as an example[J]. Journal of Environmental Engineering Technology,2021,11(2):241-248. doi: 10.12153/j.issn.1674-991X.20200245 [16] 苏东彬, 姚琪, 戴枫勇, 等.基于GIS的SWAT模型原理及其在农业面源污染中的应用[J]. 水利科技与经济,2006,12(10):712-714. doi: 10.3969/j.issn.1006-7175.2006.10.025SU D B, YAO Q, DAI F Y, et al. Study of SWAT model on agricultural non-point source pollution under GIS[J]. Water Conservancy Science and Technology and Economy,2006,12(10):712-714. doi: 10.3969/j.issn.1006-7175.2006.10.025 [17] 王中根, 刘昌明, 左其亭, 等.基于DEM的分布式水文模型构建方法[J]. 地理科学进展,2002,21(5):430-439. doi: 10.3969/j.issn.1007-6301.2002.05.004WANG Z G, LIU C M, ZUO Q T, et al. Methods of constructing distributed hydrological model based on DEM[J]. Progress in Geography,2002,21(5):430-439. doi: 10.3969/j.issn.1007-6301.2002.05.004 [18] NEITSCH S, ARNOLD J, KINIRY J, et al. Soil and water assessment tool theoretical documentation version 2009[R]. Texas: Texas Water Resources Institute, 2011. [19] 穆文彬, 于福亮, 李传哲, 等.河流生态基流概念与评价方法的差异性及其影响[J]. 中国农村水利水电,2015(1):90-94. doi: 10.3969/j.issn.1007-2284.2015.01.022MU W B, YU F L, LI C Z, et al. Differences of river ecological base flow in concept and evaluation method and its influence[J]. China Rural Water and Hydropower,2015(1):90-94. doi: 10.3969/j.issn.1007-2284.2015.01.022 [20] 朱敏翔, 杨柳, 杨超, 等.Tennant法在河流生态基流计算中的适用性探讨: 以福建省东南沿海地区为例[J]. 人民长江,2020,51(4):59-64.ZHU M X, YANG L, YANG C, et al. Applicability of Tennant method in rivers in southeast coastal areas of Fujian Province[J]. Yangtze River,2020,51(4):59-64. [21] 董哲仁, 张晶, 赵进勇.生态流量的科学内涵[J]. 中国水利,2020(15):15-19. doi: 10.3969/j.issn.1000-1123.2020.15.007DONG Z R, ZHANG J, ZHAO J Y. Scientific connotation of ecological flow[J]. China Water Resources,2020(15):15-19. doi: 10.3969/j.issn.1000-1123.2020.15.007 [22] TENNANT D L. Instream flow regimens for fish, wildlife, recreation and related environmental resources[J]. Fisheries,1976,1(4):6-10. doi: 10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2 [23] 于松延, 徐宗学, 武玮. 基于多种水文学方法估算渭河关中段生态基流[J]. 北京师范大学学报(自然科学版), 2013, 49(增刊1): 175-179.YU S Y, XU Z X, WU W. Ecological baseflow in the Guanzhong reach of the Wei River estimated by using different hydrological methods[J]. Journal of Beijing Normal University (Natural Science), 2013, 49(Suppl 1): 175-179. [24] WANG P F, WANG C, ZHU D Z. Hydraulic resistance of submerged vegetation related to effective height[J]. Journal of Hydrodynamics,2010,22(2):265-273. doi: 10.1016/S1001-6058(09)60054-8 [25] CAROLLO F G, FERRO V, TERMINI D. Flow velocity measurements in vegetated channels[J]. Journal of Hydraulic Engineering,2002,128(7):664-673. □ doi: 10.1061/(ASCE)0733-9429(2002)128:7(664)