Analysis and control countermeasures of water eco-environment problems in typical cities in Jiangsu Province reach of the Yangtze River and the area around Taihu Lake
-
摘要:
长江下游江苏段及环太湖区域作为我国经济高度发达的区域之一,城市发展带来的污染物排放量不断增加但污水收集处理能力有限等原因使得区域内城市水生态环境出现一系列问题。以该区域内10个城市为研究对象,从水环境质量、水资源、水生态和饮用水安全4个方面总结区域城市水生态环境特点,从污染源排放负荷、城市污水收集处理利用、城市面源、工业污染及风险、水生态等方面解析区域城市水生态环境存在的问题。结果表明:区域内城市主要污染源为生活源,但城市面源占比也较大;区域污水收集与处理利用能力有待提升,雨季水质较差;工业污染呈现明显的化工及纺织印染行业污染特点;城市化干扰带来的区域湖泊富营养化、河网水系结构改变等导致水生态功能退化。根据区域城市特征问题及解析结果,提出水资源保护、城市生活源控制、城市面源控制、工业污染及风险防控与水生态修复的对策建议。
Abstract:As one of the economically highly developed regions in China, Jiangsu Province of the lower reaches of the Yangtze River and the area around Taihu Lake have presented a series of problems in the urban water eco-environment, due to the increasing pollutant discharges brought by urban development and the limited sewage collection and treatment capacity. The characteristics of the urban water eco-environment of 10 cities in this area were summarized from four aspects: water environmental quality, water resources, aquatic ecology and drinking water safety. The existing problems of the regional urban water eco-environment were analyzed from the aspects of pollution source discharge load, urban sewage collection, treatment and reclamation, urban non-point source, industrial sources and risks, aquatic ecology and so on. The results showed that the major source of urban pollutants in the studied region was the urban domestic source, followed by the non-point source in the urban area. The capacity of sewage collection and treatment needed to be improved and the water quality during the rainy season was poor. Industrial pollution showed obvious characteristics in the chemical and textile printing and dyeing industries. The eutrophication and the change of river network structure caused by urbanization led to the degradation of water ecological functions. And then, according to the above characteristics problems and analytical results of regional cities, the corresponding countermeasures and suggestions for water resources protection, urban domestic source control, urban non-point sources control, industrial pollution and risk prevention and control, and the restoration of water ecology were put forward.
-
图 3 2016—2020年长江干流江苏段及环太湖区域城市人均水资源量与水资源开发利用率[15]
Figure 3. Water resources per capita and utilization rate of Jiangsu Province rerach of the Yangtze River and the area around Taihu Lake in 2016-2020
图 5 长江干流江苏段及环太湖区域城市污水收集处理再生利用情况[30]
Figure 5. Urban sewage collection, treatment and reclamation of Jiangsu Province reach of the Yangtze River and the area around Taihu Lake
表 1 长江干流江苏段及环太湖区域各城市水生态特征
Table 1. Water ecological characteristics of cities in Jiangsu Province reach of the Yangtze River and the area around Taihu Lake
表 2 长江干流江苏段及环太湖区域各类污染源的污染物排放量
Table 2. Pollutant sources apportionment of Jiangsu Province reach of the Yangtze River and the area around Taihu Lake
污染源 COD 氨氮 总氮 总磷 排放量/(t/a) 占比/% 排放量/(t/a) 占比/% 排放量/(t/a) 占比/% 排放量/(t/a) 占比/% 工业源 73 944.23 16.01 4 366.68 17.09 20 698.41 26.66 630.38 16.42 城市生活源 205 269.65 44.44 18 509.28 72.42 48 936.70 63.04 2 450.18 63.80 城市面源 182 735.52 39.55 2 681.41 10.49 7 992.14 10.30 759.55 19.78 合计 461 949.40 100 25 557.37 100 77 627.26 100 3 840.12 100 表 3 长江干流江苏及环太湖区域各城市工业源特征
Table 3. Industrial source characteristics of cities in Jiangsu Province reach of the Yangtze River and the area around Taihu Lake
城市 工业源特征 常州 钢铁冶炼业、金属表面及热处理加工业所排污染物的入河量较大 苏州 纺织业占全市COD、氨氮、总磷和总氮工业源排放量的比例分别为54.61%、52.64%、48.29%和45.71% 嘉兴 纺织业COD、氨氮、总氮和总磷排放量分别占全市工业污染物排放总量的56%、52%、54%和63%,其次为造纸行业和化学品制造业 湖州 纺织染整业废水排放量和COD、氨氮、总氮、总磷排放量分别占全市工业源排放总量的74.8%和62.1%、41.9%、32.6%和43.7% 南京 污染物排放量较高的行业为包括有机化学原料制造行业、原油加工及石油制品制造行业 镇江 电镀行业废水中重金属浓度偏高 扬州 污染物排放量较大的工业行业包括化学原料及化学制品制造业、电/热力生产供应等 泰州 化学原料及化学制品制造业、医药制造业废水排放量较大,化学原料及化学制品制造业、有色金属冶炼及压延加工业和农副食品制造业的污染物排放量较大 南通 印染、化工、钢丝绳等企业数量多 -
[1] 生态环境部. 关于发布《排放源统计调查产排污核算方法和系数手册》的公告[A/OL]. (2021-06-18)[2021-12-16]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202106/t20210618_839512.html. [2] 朱红生. 城市道路初期雨水截流与处理技术研究[D]. 北京: 清华大学, 2016. [3] 赵玉坤, 梅生成.太湖流域城市地表径流污染物浓度及污染特征分析[J]. 环境科技,2019,32(4):52-59. doi: 10.3969/j.issn.1674-4829.2019.04.011ZHAO Y K, MEI S C. Analysis of urban surface runoff pollutant concentration and pollution characteristics in Taihu Basin[J]. Environmental Science and Technology,2019,32(4):52-59. doi: 10.3969/j.issn.1674-4829.2019.04.011 [4] 周曼, 王晋虎, 盖园春, 等.苏州市某河网区水污染负荷研究分析[J]. 环境与发展,2020,32(12):177-179.ZHOU M, WANG J H, GAI Y C, et al. Research and analysis of water pollution load in a river network area in Suzhou City[J]. Environment and Development,2020,32(12):177-179. [5] 王旭婷, 吴玮, 李淮.苏州古城各功能区路面降雨径流分析[J]. 江苏水利,2019(7):9-14.WANG X T, WU W, LI H. Analysis of pavement rainfall runoff in various functional areas of Suzhou Ancient City[J]. Jiangsu Water Resources,2019(7):9-14. [6] 祁妍娟, 康爱红, 卢志萍.扬州市不同类型城市绿地径流污染特性[J]. 科学技术与工程,2019,19(35):382-387. doi: 10.3969/j.issn.1671-1815.2019.35.058QI Y J, KANG A H, LU Z P. Runoff pollution characteristics of different types of urban green in Yangzhou[J]. Science Technology and Engineering,2019,19(35):382-387. doi: 10.3969/j.issn.1671-1815.2019.35.058 [7] 杨龙, 孙长虹, 齐珺, 等.城市径流污染负荷动态更新研究[J]. 环境与可持续发展,2014,39(3):135-137. doi: 10.3969/j.issn.1673-288X.2014.03.042YANG L, SUN C H, QI J, et al. Study on the dynamic update of urban surface runoff pollutants load[J]. Environment and Sustainable Development,2014,39(3):135-137. doi: 10.3969/j.issn.1673-288X.2014.03.042 [8] 苏州市生态环境局. 2020年苏州市生态环境状况公报[A]. 苏州: 苏州市生态环境局, 2021. [9] 扬州市生态环境局. 2020年扬州市生态环境状况公报[A]. 扬州: 扬州市生态环境局, 2021. [10] 穆守胜, 柳杨, 乌景秀, 等. 常州市主城区畅流活水方案模拟比选及现场试验研究[J/OL]. 水利水运工程学报,2021. http://kns.cnki.net/kcms/detail/32.1613.TV.20210928.0122.002.html.MOU S S, LIU Y, WU J X, et al. Study on the simulation and comparison of clean water diversion scheme and field test in Changzhou main urban area[J/OL]. Water Resources Planning and Design,2021. http://kns.cnki.net/kcms/detail/32.1613.TV.20210928.0122.002.html. [11] 俞欣, 金哲, 韩琳.南京市城市河道污染特征及长效整治研究[J]. 中国资源综合利用,2021,39(1):62-65. doi: 10.3969/j.issn.1008-9500.2021.01.019YU X, JIN Z, HAN L. Pollution characteristics and long-term governance of urban river management in Nanjing[J]. China Resources Comprehensive Utilization,2021,39(1):62-65. doi: 10.3969/j.issn.1008-9500.2021.01.019 [12] 徐博文, 逄勇, 胥瑞晨, 等.基于城南河同步监测与水环境模型的区域水环境容量研究[J]. 环境科技,2021,34(3):13-18. doi: 10.3969/j.issn.1674-4829.2021.03.003XU B W, PANG Y, XU R C, et al. Study on regional water environment capacity based on synchronous monitoring of Chengnan River and water environment model[J]. Environmental Science and Technology,2021,34(3):13-18. doi: 10.3969/j.issn.1674-4829.2021.03.003 [13] 樊金璐, 刘俊, 周文琦, 等.南京市城南河流域水生态系统现状评价[J]. 水利水电技术,2021,52(5):139-148.FAN J L, LIU J, ZHOU W Q, et al. Evaluation of status quo of water ecosystem of Chengnanhe River Watershed in Nanjing[J]. Water Resources and Hydropower Engineering,2021,52(5):139-148. [14] 张云, 宋建军.南通市海门区水功能区达标分析及提升措施探讨[J]. 水资源开发与管理,2021,19(8):17-21.ZHANG Y, SONG J J. Analysis of water function zone reaching standard and discussion on lifting measures in Haimen District of Nantong City[J]. Water Resources Development and Management,2021,19(8):17-21. [15] 中国统计出版署. 中国城市统计年鉴2011[M]. 北京: 中国统计出版社, 2011. [16] 陆小宁. 基于GIS的城市河流健康评价研究[D]. 南京: 南京大学, 2020. [17] 吕立鑫. 江苏省常州市永安河小流域浮游藻类及大型底栖动物多样性与环境因子相关性研究[D]. 哈尔滨: 哈尔滨师范大学, 2020. [18] 迟明慧, 马迎群, 赵艳民, 等.嘉兴市北部湖荡区水生态系统健康评价[J]. 环境科学与技术,2020,43(8):177-184.CHI M H, MA Y Q, ZHAO Y M, et al. Health status assessment of aquatic ecosystem in northern lake area of Jiaxing City[J]. Environmental Science & Technology,2020,43(8):177-184. [19] 王书航, 郑朔方, 尚晓, 等.平原河网景观湖泊水质提升关键问题分析与对策研究: 以嘉兴南湖为例[J]. 环境工程技术学报,2020,10(6):891-896. doi: 10.12153/j.issn.1674-991X.20200065WANG S H, ZHENG S F, SHANG X, et al. Key issues of water quality improvement in the landscape lake of plain river network and corresponding countermeasures: a case study of Nanhu Lake in Jiaxing City[J]. Journal of Environmental Engineering Technology,2020,10(6):891-896. doi: 10.12153/j.issn.1674-991X.20200065 [20] 李娣, 李旭文, 牛志春, 等.江苏省不同营养状况湖泊底栖动物群落结构与多样性比较[J]. 生态毒理学报,2017,12(1):163-172.LI D, LI X W, NIU Z C, et al. A comparative study on macrobenthic community structure and diversity in different trophic status lakes of Jiangsu Province[J]. Asian Journal of Ecotoxicology,2017,12(1):163-172. [21] 南通市生态环境局. 2020年南通市生态环境状况公报[A]. 南通: 南通市生态环境局, 2021. [22] 杨晶晶. 河流型饮用水水源地环境风险评价方法研究[D]. 北京: 北京化工大学, 2019. [23] 管桂玲, 卢发周, 李萍, 等.长江南京段饮用水水源地风险评估[J]. 人民珠江,2018,39(8):20-24. doi: 10.3969/j.issn.1001-9235.2018.08.005GUAN G L, LU F Z, LI P, et al. Risk assessment for drinking water sources in Nanjing section of the Yangtze River[J]. Pearl River,2018,39(8):20-24. doi: 10.3969/j.issn.1001-9235.2018.08.005 [24] 杜云彬, 陈求稳, 王智源, 等.江苏省典型湖泊饮用水源地安全综合评价[J]. 水资源保护,2020,36(5):71-78. doi: 10.3880/j.issn.1004-6933.2020.05.011DU Y B, CHEN Q W, WANG Z Y, et al. Safety evaluation of typical lake drinking water sources in Jiangsu Province[J]. Water Resources Protection,2020,36(5):71-78. doi: 10.3880/j.issn.1004-6933.2020.05.011 [25] 常州市生态环境局. 2020年常州市生态环境状况公报[A]. 常州: 常州市生态环境局, 2021. [26] 孙海涛, 卜伟, 朱希希, 等. 江苏省泰州市长江饮用水源地水环境质量调查研究[J]. 四川环境, 2020, 39(1): 62-67.SUN H T, BU W, ZHU X X, et al. Investigation of water environment quality of drinking water sources in the Taizhou Yangtze River of Jiangsu Province[J]. Sichuan Environment, 2020, 39(1): 62-67. [27] 施晓帆. 湖州市水源特征解析及工艺处理效能研究[D]. 杭州: 浙江大学, 2017. [28] 许祥. 城市饮用水源中磺胺类抗生素污染特征分析和风险评价[D]. 杭州: 浙江工业大学, 2019. [29] 张珂. 苏州市饮用水源和供水过程新兴污染物的分布[D]. 苏州: 苏州科技大学, 2019. [30] 住房和城乡建设部. 2020年中国城市建设统计年鉴[M]. 北京: 中国统计出版社, 2020. [31] 郑玉丽. 基于PCSWMM的镇江市主城区暴雨内涝模拟[D]. 徐州: 中国矿业大学, 2020. [32] 卢军辉. 污水处理厂运行模拟和工艺优化研究: 以苏州新区第二污水处理厂为例[D]. 苏州: 苏州科技大学, 2018. [33] 杨默远, 潘兴瑶, 刘洪禄, 等.基于文献数据再分析的中国城市面源污染规律研究[J]. 生态环境学报,2020,29(8):1634-1644.YANG M Y, PAN X Y, LIU H L, et al. Urban non-point pollution characteristics in China: a meta-analysis[J]. Ecology and Environmental Sciences,2020,29(8):1634-1644. [34] 杨秋娟. 宜兴城区雨水管道中污染物分析及雨水削减技术[D]. 西安: 西安建筑科技大学, 2016. [35] 金科. 基于合流制系统的改良型AA/O工艺雨季运行调控研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. [36] 徐强强, 李阳, 马黎, 等.城市雨水管道沉积物氮磷污染溶出特性试验研究[J]. 环境科学研究,2021,34(3):646-654.XU Q Q, LI Y, MA L, et al. Experimental study on leaching characteristics of nitrogen and phosphorus in urban rainwater pipeline sediment[J]. Research of Environmental Sciences,2021,34(3):646-654. [37] 康爱红, 娄可可, 肖鹏, 等.扬州市路面径流污染特性分析与排放规律研究[J]. 公路,2016,61(8):212-216. [38] 毛旭辉. 苏州海绵城市试点区降雨径流与河道水环境耦合模拟研究[D]. 北京: 清华大学, 2018. [39] 赵玉婷, 李亚飞, 董林艳, 等.长江经济带典型流域重化产业环境风险及对策[J]. 环境科学研究,2020,33(5):1247-1253.ZHAO Y T, LI Y F, DONG L Y, et al. Environmental risks and countermeasures of heavy chemical industry in the Yangtze River Economic Belt[J]. Research of Environmental Sciences,2020,33(5):1247-1253. [40] MA J R, QIN B Q, WU P, et al. Controlling cyanobacterial blooms by managing nutrient ratio and limitation in a large hyper-eutrophic lake: Lake Taihu, China[J]. Journal of Environmental Sciences,2015,27:80-86. doi: 10.1016/j.jes.2014.05.042 [41] HU K M, WANG Y Y, FENG B, et al. Calculation of water environmental capacity of large shallow lakes:a case study of Taihu Lake[J]. Water Policy,2020,22(2):223-236. doi: 10.2166/wp.2020.076 [42] 刘永婷. 城市发展对嘉兴市水系连通影响及其与水资源耦合关系研究[D]. 芜湖: 安徽师范大学, 2018. [43] 林芷欣, 许有鹏, 代晓颖, 等.城市化进程对长江下游平原河网水系格局演变的影响[J]. 长江流域资源与环境,2019,28(11):2612-2620.LIN Z X, XU Y P, DAI X Y, et al. Effect of urbanization on the plain river network structure in the lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin,2019,28(11):2612-2620. [44] HUANG F, WU Y, QIAN B, et al. An environmental flow assessment of a river's blocking effect on a lake in a river-lake system: application in the Yangtze-Poyang system[J]. Environmental Monitoring and Assessment,2018,190(8):453. doi: 10.1007/s10661-018-6825-x [45] HAVENS K E, FOX D, GORNAK S, et al. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee, Florida (USA)[J]. Hydrobiologia,2005,539(1):225-237. doi: 10.1007/s10750-004-4876-1 [46] LIU X Q, WANG H Z. Estimation of minimum area requirement of river-connected lakes for fish diversity conservation in the Yangtze River floodplain[J]. Diversity and Distributions,2010,16(6):932-940. doi: 10.1111/j.1472-4642.2010.00706.x [47] 郑鹏, 蒋小明, 曹亮, 等.江湖阻隔背景下东部平原湖泊鱼类功能特征及多样性变化[J]. 湖泊科学,2022,34(1):151-168. doi: 10.18307/2022.0114ZHENG P, JIANG X M, CAO L, et al. Long-term changes in the functional trait composition and diversity of fish assemblages in eastern plain lakes under the regime of river-lake connectivity loss[J]. Journal of Lake Sciences,2022,34(1):151-168. ◇ doi: 10.18307/2022.0114