Research status on catalyst of CO2 catalytic conversion
-
摘要:
将CO2通过催化反应转化为甲烷、甲醇、一氧化碳、甲酸、低碳烯烃和芳香烃等有价值化工原料是实现碳达峰和碳中和的重要手段。催化剂是转化过程的决定因素之一,开发高转化率和高选择性的催化剂仍是当前CO2催化转化研究的重点内容。目前,采用的催化剂主要为贵金属催化剂和部分过渡态金属催化剂,同时部分非金属催化剂、新型催化剂和本体催化剂也具有良好的催化活性。转化产物分子结构的复杂化和非均相化程度越高,则CO2催化转化的转化率和选择性越低。催化反应以热催化和光催化为主,反应条件的差异导致不同催化剂的性能可比性较差。因此,除开发高效催化剂外,建立规范化的CO2催化转化评价方法也是未来研究的重点。
Abstract:The catalytic conversion of CO2 to valuable chemical materials such as methane, methanol, carbon monoxide, methanoic acid, light olefins, arene, and so on is an important way for the carbon peak and carbon neutrality. Catalyst is one of the decisive factors in the conversion process, so the development of new catalysts with high conversion rate and selectivity is still the focus of CO2 catalytic conversion research. The catalysts currently used are mainly noble metal catalysts, with some parts being transition metal catalysts. Moreover, some nonmetal catalysts, new catalysts and bulk catalysts are also proven to have good catalytic performance. With the complexity and heterogeneity of converted products increasing, the conversion rate and selectivity of CO2 catalytic conversion turns lower. The catalytic reaction mainly contains thermocatalytic and photocatalytic, and the differences of catalytic conditions lead to the poor comparability of the performance of different kinds of catalysts. As a result, establishing standardized evaluation methods for CO2 catalytic conversion will also be the key research area besides developing high-performance catalysts.
-
Key words:
- CO2 /
- catalytic conversation /
- catalyst /
- conversion rate /
- selectivity
-
表 1 CO2转化催化剂对比
Table 1. Comparison of catalysts for catalytic conversion of CO2
产物 催化剂类型 催化剂 反应温度
/℃转化率
/%选择性
/%甲烷 贵金属[10] Ni、Co、Pd和Ru掺杂的CeO2、Rh/γ-Al2O3 450 55 99 非贵金属[15-16] Ni/α-Al2O3、Ni/TiO2、Ni/MgO、Ni-Al LDHs 250 70~100 99~100 非金属[46] 胺基功能化石墨烯量子点 50~63 甲醇 Cu基[47-48] Cu/ZnO/Al2O3、Cu/ZnO 260 95 70~98 贵金属[21-23] Pd/ZnO、Pd/CeO2、Au/ZnO 240 47.7 In2O3基[24] Fe、Ru、Co、Rh、Ni、Pd和Pt掺杂In2O3 270~300 3.7~10 71~87 新型催化剂[49] NixGay 220 90~100 一氧化碳 贵金属[27] Pt/Au@Pd@UiO-66 300~400 7.3~35.3 70~100 非贵金属[29] CuZn-BTC CP纳米棒 500 5 100 甲酸 异质化分子[31] UiO-66-P-BF2 纳米金属[32] NH2-MIL-101(Cr) 242 本体催化剂[33] Ru(Ⅱ)@JMS-1a 110 98.8 低碳烯烃 Fe基[36,38] Fe-MIL-88B、Fe/C 350 38.5 38.8 Zn基[35] ZnO-ZrO2/SAPO-34、ZnO-ZrO2/ZSM5、ZnAl2O4│MOR 600 46 41.4 芳香烃 Zn基[41-42] ZnAlOx与HZSM-5复合、ZnZrO/ZSM-5 320 9.1~14 73~73.9 Cr基[43] Cr2O3/HZSM-5 350 34.5 75.9 -
[1] 张剑, 刘景洋, 董莉, 等. 中国能源消费CO2排放的影响因素及情景分析[J/OL]. 环境工程技术学报. doi:10.3969/j.issn.1674-991X.20210563.ZHANG J, LIU J Y, DONG L, et al. Influencing factors and scenario analysis of China's energy consumption CO2 emissions[J]. Journal of Environmental Engineering Technology. doi:10.3969/j.issn.1674-991X.20210563. [2] 何良年.面向可持续发展的二氧化碳化学[J]. 科学通报,2020,65(31):3347-3348. doi: 10.1360/TB-2020-1119HE L N. Carbon dioxide chemistry towards sustainable development[J]. Chinese Science Bulletin,2020,65(31):3347-3348. doi: 10.1360/TB-2020-1119 [3] 王瑞, 许义榕, 孟渴欣, 等.二氧化碳转化制取燃料及高值化学品研究进展[J]. 环境工程技术学报,2020,10(4):639-646. doi: 10.12153/j.issn.1674-991X.20190179WANG R, XU Y R, MENG K X, et al. Development of research on the conversion of carbon dioxide into fuel and high value-added products[J]. Journal of Environmental Engineering Technology,2020,10(4):639-646. doi: 10.12153/j.issn.1674-991X.20190179 [4] 李亚云. 二氧化碳催化加氢制备乙醇的研究[D]. 金华: 浙江师范大学, 2020. [5] DE S, DOKANIA A, RAMIREZ A, et al. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization[J]. ACS Catalysis,2020,10(23):14147-14185. doi: 10.1021/acscatal.0c04273 [6] JIA C M, GAO J J, DAI Y H, et al. The thermodynamics analysis and experimental validation for complicated systems in CO2 hydrogenation process[J]. Journal of Energy Chemistry,2016,25(6):1027-1037. doi: 10.1016/j.jechem.2016.10.003 [7] ROY S, CHEREVOTAN A, PETER S C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges[J]. ACS Energy Letters,2018,3(8):1938-1966. doi: 10.1021/acsenergylett.8b00740 [8] HWANG S, LEE J, HONG U G, et al. Methanation of carbon dioxide over mesoporous Ni-Fe-Ru-Al2O3 xerogel catalysts: effect of ruthenium content[J]. Journal of Industrial and Engineering Chemistry,2013,19(2):698-703. doi: 10.1016/j.jiec.2012.10.007 [9] AKAMARU S, SHIMAZAKI T, KUBO M, et al. Density functional theory analysis of methanation reaction of CO2 on Ru nanoparticle supported on TiO2[J]. Applied Catalysis A:General,2014,470:405-411. doi: 10.1016/j.apcata.2013.11.016 [10] SHARMA S, HU Z P, ZHANG P, et al. CO2 methanation on Ru-doped ceria[J]. Journal of Catalysis,2011,278(2):297-309. doi: 10.1016/j.jcat.2010.12.015 [11] KARELOVIC A, RUIZ P. CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism[J]. Applied Catalysis B:Environmental,2012,113/114:237-249. doi: 10.1016/j.apcatb.2011.11.043 [12] 赵志伟. 过渡金属催化剂的制备及二氧化碳催化加氢性能研究[D]. 合肥: 中国科学技术大学, 2018. [13] 史建公, 刘志坚, 刘春生.二氧化碳甲烷化研究进展[J]. 中外能源,2018,23(10):70-87. [14] VANCE C K, BARTHOLOMEW C H. Hydrogenation of carbon dioxide on group viii metals: Ⅲ. effects of support on activity/selectivity and adsorption properties of nickel[J]. Applied Catalysis,1983,7(2):169-177. doi: 10.1016/0166-9834(83)80005-0 [15] TADA S, SHIMIZU T, KAMEYAMA H, et al. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures[J]. International Journal of Hydrogen Energy,2012,37(7):5527-5531. doi: 10.1016/j.ijhydene.2011.12.122 [16] GABROVSKA M, EDREVA-KARDJIEVA R, CRIŞAN D, et al. Ni-Al layered double hydroxides as catalyst precursors for CO2 removal by methanation[J]. Reaction Kinetics, Mechanisms and Catalysis,2012,105(1):79-99. doi: 10.1007/s11144-011-0378-0 [17] LU B W, KAWAMOTO K. Preparation of the highly loaded and well-dispersed NiO/SBA-15 for methanation of producer gas[J]. Fuel,2013,103:699-704. doi: 10.1016/j.fuel.2012.09.009 [18] 林代峰, 张臻, 罗永晋, 等.二氧化碳加氢制甲醇催化剂研究进展[J]. 现代化工,2021,41(6):11-16. doi: 10.12361/2661-3670-03-06-06LIN D F, ZHANG Z, LUO Y J, et al. Research advances on catalysts for hydrogenation of carbon dioxide to methanol[J]. Modern Chemical Industry,2021,41(6):11-16. doi: 10.12361/2661-3670-03-06-06 [19] 刘志坚, 廖建军, 谭经品, 等.二氧化碳加氢合成甲醇催化剂研究进展[J]. 石油与天然气化工,2001,30(4):169-171. doi: 10.3969/j.issn.1007-3426.2001.04.004LIU Z J, LIAO J J, TAN J P, et al. The progress in studies on catalysts for methanol synthesis from CO2/H2[J]. Chemical Engineering of Oil and Gas,2001,30(4):169-171. doi: 10.3969/j.issn.1007-3426.2001.04.004 [20] 徐敏杰, 朱明辉, 陈天元, 等.CO2高值化利用: CO2加氢制甲醇催化剂研究进展[J]. 化工进展,2021,40(2):565-576.XU M J, ZHU M H, CHEN T Y, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol[J]. Chemical Industry and Engineering Progress,2021,40(2):565-576. [21] BAHRUJI H, BOWKER M, HUTCHINGS G, et al. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol[J]. Journal of Catalysis,2016,343:133-146. doi: 10.1016/j.jcat.2016.03.017 [22] JIANG F, WANG S S, LIU B, et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catalysis,2020,10(19):11493-11509. doi: 10.1021/acscatal.0c03324 [23] ABDEL-MAGEED A M, KLYUSHIN A, REZVANI A, et al. Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: insights from operando IR and near-ambient-pressure XPS and XAS measurements[J]. Angewandte Chemie International Edition,2019,58(30):10325-10329. doi: 10.1002/anie.201900150 [24] DOSTAGIR N H M, THOMPSON C, KOBAYASHI H, et al. Rh promoted In2O3 as a highly active catalyst for CO2 hydrogenation to methanol[J]. Catalysis Science & Technology,2020,10(24):8196-8202. [25] BAVYKINA A, YARULINA I, AL ABDULGHANI A J, et al. Turning a methanation co catalyst into an in-co methanol producer[J]. ACS Catalysis,2019,9(8):6910-6918. doi: 10.1021/acscatal.9b01638 [26] ZHANG J Z, AN B, HONG Y H, et al. Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation[J]. Materials Chemistry Frontiers,2017,1(11):2405-2409. doi: 10.1039/C7QM00328E [27] ZHENG Z Z, XU H T, XU Z L, et al. A monodispersed spherical Zr-based metal-organic framework catalyst, Pt/Au@Pd@UIO-66, comprising an Au@Pd core-shell encapsulated in a UIO-66 center and its highly selective CO2 hydrogenation to produce CO[J]. Small,2018,14(5):1702812. doi: 10.1002/smll.201702812 [28] LI Y H, CAI X H, CHEN S J, et al. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem,2018,11(6):1040-1047. doi: 10.1002/cssc.201800016 [29] 史建公, 刘志坚, 刘春生.二氧化碳催化转化为甲酸的技术进展[J]. 中外能源,2019,24(4):64-82. [30] 周程, 南永永, 查飞, 等.金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报,2021,49(10):1444-1457. doi: 10.1016/S1872-5813(21)60097-XZHOU C, NAN Y Y, ZHA F, et al. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology,2021,49(10):1444-1457. doi: 10.1016/S1872-5813(21)60097-X [31] YE J Y, JOHNSON J K. Design of lewis pair-functionalized metal organic frameworks for CO2 hydrogenation[J]. ACS Catalysis,2015,5(5):2921-2928. doi: 10.1021/acscatal.5b00396 [32] WANG S P, HOU S H, WU C, et al. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid[J]. Chinese Chemical Letters,2019,30(2):398-402. doi: 10.1016/j.cclet.2018.06.021 [33] TSHUMA P, MAKHUBELA B C E, ÖHRSTRÖM L, et al. Cyclometalation of lanthanum(Ⅲ) based MOF for catalytic hydrogenation of carbon dioxide to formate[J]. RSC Advances,2020,10(6):3593-3605. doi: 10.1039/C9RA09938G [34] 李凝.二氧化碳催化合成低碳烯烃的催化剂研究进展[J]. 化工技术与开发,2006,35(12):10-12. doi: 10.3969/j.issn.1671-9905.2006.12.003LI N. Research development of catalyst for hydrogenation synthesis of light olefins with carbon dioxide[J]. Technology & Development of Chemical Industry,2006,35(12):10-12. doi: 10.3969/j.issn.1671-9905.2006.12.003 [35] LIU J H, ZHANG A F, LIU M, et al.Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utilization, 2017, 21: 100-107. [36] RAMIREZ A, GEVERS L, BAVYKINA A, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis,2018,8(10):9174-9182. [37] CHENG K, GU B, LIU X L, et al. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carboncarbon coupling[J]. Angewandte Chemie International Edition,2016,55(15):4725-4728. [38] 成康, 刘小梁,周铖,等.二氧化碳直接催化转化制低碳烯烃和 芳烃[C]//第一届全国二氧化碳资源化利用学术会议.广州: 中国化学会,2019. [39] 焦佳鹏, 田海锋, 何环环, 等.CO/CO2加氢制芳烃的研究进展[J]. 化工进展,2021,40(1):205-220.JIAO J P, TIAN H F, HE H H, et al. Recent advanced of CO/CO2 hydrogenation to aromatics[J]. Chemical Industry and Engineering Progress,2021,40(1):205-220. [40] LIU R, TIAN H F, YANG A M, et al. Preparation of HZSM-5 membrane packed CuO-ZnO-Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether[J]. Applied Surface Science,2015,345:1-9. doi: 10.1016/j.apsusc.2015.03.125 [41] NI Y, CHEN Z, FU Y, et al. Selective conversion of CO2 and H2 into aromatics[J]. Nature Communications,2018,9:3457. doi: 10.1038/s41467-018-05880-4 [42] LI Z L, QU Y Z, WANG J J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3(2):570-583. doi: 10.1016/j.joule.2018.10.027 [43] WANG Y, TAN L, TAN M H, et al. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catalysis,2019,9(2):895-901. doi: 10.1021/acscatal.8b01344 [44] 梁珑, 张玉冬, 文进军, 等.Pt-Cu/TiO2{001}纳米片用于CO2加氢制甲醇反应的研究[J]. 环境科学学报,2020,40(7):2408-2416.LIANG L, ZHANG Y D, WEN J J, et al. Study on Pt-Cu/TiO2{001} nanosheets for CO2 hydrogenation to methanol[J]. Acta Scientiae Circumstantiae,2020,40(7):2408-2416. [45] 姜华, 李艳萍, 高健, 等.关于统筹建立二氧化碳排放总量控制制度的思考[J]. 环境工程技术学报,2022,12(1):1-5. doi: 10.12153/j.issn.1674-991X.20210778JIANG H, LI Y P, GAO J, et al. Thoughts on the overall establishment of total carbon dioxide emission control system[J]. Journal of Environmental Engineering Technology,2022,12(1):1-5. doi: 10.12153/j.issn.1674-991X.20210778 [46] YADAV R M, LI Z Y, ZHANG T Y, et al. Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane[J]. Advanced Materials,2022,34(2):2105690. doi: 10.1002/adma.202105690 [47] BANSODE A, URAKAWA A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. Journal of Catalysis,2014,309:66-70. doi: 10.1016/j.jcat.2013.09.005 [48] LIAO F L, HUANG Y Q, GE J W, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie,2011,123(9):2210-2213. doi: 10.1002/ange.201007108 [49] STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nature Chemistry,2014,6(4):320-324. ⊕ doi: 10.1038/nchem.1873