留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绿色屋顶景天植物根系分布特征及其对饱和导水率的影响

陈璇 刘瑞芬

陈璇,刘瑞芬.绿色屋顶景天植物根系分布特征及其对饱和导水率的影响[J].环境工程技术学报,2023,13(1):423-430 doi: 10.12153/j.issn.1674-991X.20210765
引用本文: 陈璇,刘瑞芬.绿色屋顶景天植物根系分布特征及其对饱和导水率的影响[J].环境工程技术学报,2023,13(1):423-430 doi: 10.12153/j.issn.1674-991X.20210765
CHEN X,LIU R F.Root distribution characteristics of green roof Sedum plants and their effects on saturated hydraulic conductivity[J].Journal of Environmental Engineering Technology,2023,13(1):423-430 doi: 10.12153/j.issn.1674-991X.20210765
Citation: CHEN X,LIU R F.Root distribution characteristics of green roof Sedum plants and their effects on saturated hydraulic conductivity[J].Journal of Environmental Engineering Technology,2023,13(1):423-430 doi: 10.12153/j.issn.1674-991X.20210765

绿色屋顶景天植物根系分布特征及其对饱和导水率的影响

doi: 10.12153/j.issn.1674-991X.20210765
基金项目: 国家自然科学基金青年科学基金项目(51909081)
详细信息
    作者简介:

    陈璇(1995—),女,硕士研究生,主要研究方向为低影响开发技术及水文数值模拟,xuancxx2019@163.com

    通讯作者:

    刘瑞芬(1986—),女,副教授,博士,主要研究方向为低影响开发技术及水文数值模拟,ruifen1986@aliyun.com

  • 中图分类号: X173,TU992

Root distribution characteristics of green roof Sedum plants and their effects on saturated hydraulic conductivity

  • 摘要:

    为丰富我国绿色屋顶中景天属植物根系分布特征的研究及探讨根系特征参数与绿色屋顶基质层饱和导水率间的关系,选用景天属植物垂盆草、佛甲草种植于珍珠岩基质中,基质厚度为6、10、14 cm,结合武汉市降水特点对植物采用统一浇水制度进行培养,选取根长密度、根表面积密度、根体积密度来描述根系形态,并测定基质的饱和导水率;以无植物组为对照组,定量比较不同基质厚度下绿色屋顶景天属植物根系分布特征及其饱和导水率的变化差异。结果表明:1)景天属植物的根长密度、根表面积密度、根体积密度受珍珠岩基质厚度影响显著。6 cm基质中植物的总根长密度最大,这与基质中直径为0.2~0.4 mm根的根长密度占比大有关;14 cm基质中植物的总根表面积密度、根体积密度最大,这与基质中直径为1~2 mm根的根表面积密度、根体积密度占比大有关。2)景天属植物根系对珍珠岩基质饱和导水率的改变显著。相比无植物组,景天属植物根系的加入使得珍珠岩基质的饱和导水率改变了−98.95%~−95.15%,有植物组的饱和导水率远低于无植物组;而有植物组间,珍珠岩基质的饱和导水率与景天属植物直径为0.2~0.4 mm根的根长密度(P=0.050,R2=0.786)、根表面积密度(P=0.047,R2=0.818)、根体积密度(P=0.044,R2=0.824)呈显著正相关。

     

  • 图  1  2种植物在不同厚度基质中的根长密度

    注:不同小写字母代表相同厚度下不同直径的根系间特征参数的差异显著(P<0.05)。

    Figure  1.  Root length density of two plants in substrates of different depths

    图  2  2种植物在不同厚度基质中的根表面积密度

    注:同图1。

    Figure  2.  Root surface area density of two plants in substrates of different depths

    图  3  2种植物在不同厚度基质中的根体积密度

    注:同图1。

    Figure  3.  Root volume density of two plants in substrates of different depths

    图  4  不同厚度珍珠岩基质中佛甲草根系扫描图像

    Figure  4.  Scanning images of the root system of Sedum lineare in perlite substrate with different depths

    图  5  Ks与直径为0.2~0.4 mm根的根系特征参数的相关性

    Figure  5.  Correlation between Ks and root characteristic parameters of 0.2~0.4 mm roots

    表  1  2种景天属植物的生物学特性[18]

    Table  1.   Biological characteristics of two Sedum plants

    名称生物学特性
    垂盆草多年生肉质草本,茎匍匐生长,长10~25 cm。叶全缘,3片轮生,倒披针形至长圆形。花淡黄色,
    聚伞花序,花期5—7月
    佛甲草多年生肉质草本,茎高10~20 cm,3叶轮生,少有4叶轮或对生,叶线形,黄绿色,先端钝尖,基部无柄,
    有短距。花黄色,花期5—6月
    下载: 导出CSV

    表  2  珍珠岩基质的理化性质

    Table  2.   Physical and chemical properties of perlite substrate

    干密度/
    (g/cm3
    总孔隙
    度/%
    最大持
    水量/%
    有机质浓
    度/(g/kg)
    碱解氮浓
    度/(mg/L)
    速效磷浓
    度/(mg/L)
    0.21±
    0.01
    91.40±
    0.01
    36.65±
    1.33
    31.15±
    2.72
    25.83±
    1.11
    63.59±
    2.60
    下载: 导出CSV

    表  3  有无植物时不同厚度基质的饱和导水率

    Table  3.   Saturated hydraulic conductivity of substrates of different depths with or without plants

    组别基质厚度/cmKs/(cm/min)
    无植物[17]6/10/1454.457(±0.193) a
    垂盆草62.121(±0.177) c
    101.975(±0.196) c
    140.568(±0.002) e
    佛甲草62.641(±0.098) b
    100.682(±0.067) d
    140.743(±0.057) d
      注:小写字母不同表示有无植物时不同厚度基质Ks差异显著(P<0.05)。
    下载: 导出CSV
  • [1] VIJAYARAGHAVAN K. Green roofs: a critical review on the role of components, benefits, limitations and trends[J]. Renewable and Sustainable Energy Reviews,2016,57:740-752. doi: 10.1016/j.rser.2015.12.119
    [2] 范俊鹏. 海绵城市理论下的沣西新城绿色屋顶设计研究展[D]. 西安: 西安建筑科技大学术, 2021.
    [3] XIAO M, LIN Y L, HAN J, et al. A review of green roof research and development in China[J]. Renewable and Sustainable Energy Reviews,2014,40:633-648. doi: 10.1016/j.rser.2014.07.147
    [4] 孙义新, 张一, 朱焰, 等.基于药食同源作物紫苏的屋顶绿化模式研究[J]. 环境工程技术学报,2019,9(3):325-330. doi: 10.12153/j.issn.1674-991X.2019.03.050

    SUN Y X, ZHANG Y, ZHU Y, et al. Study on roof greening model with a medicine and edible homologous crop Perilla frutescens crispa[J]. Journal of Environmental Engineering Technology,2019,9(3):325-330. doi: 10.12153/j.issn.1674-991X.2019.03.050
    [5] FARRELL C, MITCHELL R E, SZOTA C, et al. Green roofs for hot and dry climates: interacting effects of plant water use, succulence and substrate[J]. Ecological Engineering,2012,49:270-276. doi: 10.1016/j.ecoleng.2012.08.036
    [6] 陈兴武, 甘露, 尹淑霞.基质深度和植被类型对屋顶绿化基质水分吸收能力的影响[J]. 安徽农业大学学报,2016,43(4):624-629. doi: 10.13610/j.cnki.1672-352x.20160712.001

    CHEN X W, GAN L, YIN S X. Effects of plant type and substrate depth on water absorption of green roof substrate[J]. Journal of Anhui Agricultural University,2016,43(4):624-629. doi: 10.13610/j.cnki.1672-352x.20160712.001
    [7] ZHANG Z, SZOTA C, FLETCHER T D, et al. Green roof storage capacity can be more important than evapotranspiration for retention performance[J]. Journal of Environmental Management,2019,232:404-412.
    [8] SKOROBOGATOV A, HE J X, CHU A, et al. The impact of media, plants and their interactions on bioretention performance: a review[J]. Science of the Total Environment,2020,715:136918. doi: 10.1016/j.scitotenv.2020.136918
    [9] 彭舜磊, 由文辉, 沈会涛.植被群落演替对土壤饱和导水率的影响[J]. 农业工程学报,2010,26(11):78-84. doi: 10.3969/j.issn.1002-6819.2010.11.014

    PENG S L, YOU W H, SHEN H T. Effect of syndynamic on soil saturated hydraulic conductivity[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(11):78-84. doi: 10.3969/j.issn.1002-6819.2010.11.014
    [10] 魏玲娜, 陈喜, 程勤波, 等.红壤丘陵区土壤渗透性及其受植被影响分析[J]. 中国科技论文,2013,8(5):377-380. doi: 10.3969/j.issn.2095-2783.2013.05.004

    WEI L N, CHEN X, CHENG Q B, et al. Soil permeability and effects of vegetation in the red soil hilly region[J]. China Sciencepaper,2013,8(5):377-380. doi: 10.3969/j.issn.2095-2783.2013.05.004
    [11] 胡钜鑫, 虎胆·吐马尔白, 穆丽德尔·托伙加, 等.非饱和土壤导水率试验计算与模拟分析[J]. 石河子大学学报(自然科学版),2019,37(1):105-111. doi: 10.13880/j.cnki.65-1174/n.2019.01.016

    HU J X, HUDAN T, MULIDEER T, et al. Analysis about the measurement and the simulation of unsaturated soil hydraulic conductivity[J]. Journal of Shihezi University (Natural Science),2019,37(1):105-111. doi: 10.13880/j.cnki.65-1174/n.2019.01.016
    [12] 胡尹超, 秦华鹏, 林子璇.深圳绿色屋顶雨水滞留效应变化及其影响因素[J]. 深圳大学学报(理工版),2020,37(4):347-354. doi: 10.3724/SP.J.1249.2020.04347

    HU Y C, QIN H P, LIN Z X. Variation and influencing factors of rainwater retention of green roofs in Shenzhen[J]. Journal of Shenzhen University (Science and Engineering),2020,37(4):347-354. doi: 10.3724/SP.J.1249.2020.04347
    [13] 葛德, 张守红.基质类型及厚度对绿色屋顶径流调控效益的影响[J]. 中国水土保持科学,2019,17(3):31-38. doi: 10.16843/j.sswc.2019.03.005

    GE D, ZHANG S H. Influence of types and depths of substrates on hydrological performances of green roofs[J]. Science of Soil and Water Conservation,2019,17(3):31-38. doi: 10.16843/j.sswc.2019.03.005
    [14] 叶建军, 魏裕基, 肖衡林, 等.初绿化屋顶对雨水截留作用研究[J]. 给水排水,2014,50(5):139-143. doi: 10.3969/j.issn.1002-8471.2014.05.034
    [15] 李田, 陈昱霖, 顾俊青.不同介质组成的粗放型绿色屋面降雨出流水质[J]. 同济大学学报(自然科学版),2015,43(11):1722-1727. doi: 10.11908/j.issn.0253-374x.2015.11.017

    LI T, CHEN Y L, GU J Q. Effluent quality of extensive green roofs with different substrates[J]. Journal of Tongji University (Natural Science),2015,43(11):1722-1727. doi: 10.11908/j.issn.0253-374x.2015.11.017
    [16] 李国文, 李娜, 黎佳茜, 等.北方低温条件下沼渣资源化培育佛甲草的应用研究[J]. 环境工程技术学报,2019,9(1):103-110. doi: 10.3969/j.issn.1674-991X.2019.01.014

    LI G W, LI N, LI J X, et al. Application of cultivation of Sedum lineare Thunb with biogas residue resources under low temperature condition in North China[J]. Journal of Environmental Engineering Technology,2019,9(1):103-110. doi: 10.3969/j.issn.1674-991X.2019.01.014
    [17] 陈璇, 周明来, 叶建军, 等.不同骨料对粗放型绿色屋顶人工基质理化性质的影响[J]. 湖北工业大学学报,2021,36(5):73-80. doi: 10.3969/j.issn.1003-4684.2021.05.016

    CHEN X, ZHOU M L, YE J J, et al. Effect of different aggregates on physical and chemical properties of extensive green roof artificial substrate[J]. Journal of Hubei University of Technology,2021,36(5):73-80. doi: 10.3969/j.issn.1003-4684.2021.05.016
    [18] 周媛, 郭彩霞, 董艳芳, 等.9种景天属轻型屋顶绿化植物的耐热性研究[J]. 西北农林科技大学学报(自然科学版),2014,42(9):119-127. doi: 10.13207/j.cnki.jnwafu.2014.09.011

    ZHOU Y, GUO C X, DONG Y F, et al. Heat tolerance of 9 Sedums plants for light roof greening[J]. Journal of Northwest A & F University (Natural Science Edition),2014,42(9):119-127. doi: 10.13207/j.cnki.jnwafu.2014.09.011
    [19] DUSZA Y, BAROT S, KRAEPIEL Y, et al. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type[J]. Ecology and Evolution,2017,7(7):2357-2369. doi: 10.1002/ece3.2691
    [20] 段锦兰, 付宝春, 康红梅, 等.景天属植物引种及繁殖技术研究[J]. 山西农业科学,2013,41(12):1344-1346.

    DUAN J L, FU B C, KANG H M, et al. Studies on introduction and propagation of Sedum plants[J]. Journal of Shanxi Agricultural Sciences,2013,41(12):1344-1346.
    [21] 余孟好, 赵平, 曾小平, 等.屋顶绿化植物佛甲草对温度梯度的生理生态适应[J]. 广西植物,2012,32(3):333-339. doi: 10.3969/j.issn.1000-3142.2012.03.011

    YU M H, ZHAO P, ZENG X P, et al. Ecophysiological adaptation of green roof plant Sedum lineare to temperature variation[J]. Guihaia,2012,32(3):333-339. doi: 10.3969/j.issn.1000-3142.2012.03.011
    [22] FLL (Forschungsgessellschaft Landschaftsentwicklung Landschaftsbau e V). Guidelines for the planning, execution, and upkeep of green-roof sites [R]. Bonn: FLL, 2008.
    [23] FASSMAN E A, SIMCOCK R E. V. Extensive green roofs for stormwater mitigation: part 1. design and construction[R]. Auckland: Auckland Regional Council, 2009.
    [24] FORREST L, GIOANNINI R, VANLEEUWEN D M, et al. Shallow substrates support the growth of contrasting plant types installed in irrigated, arid-climate Green Roofs1[J]. Journal of Environmental Horticulture,2017,35(4):146-155. doi: 10.24266/0738-2898-35.4.146
    [25] 谢玲芝, 李俊楠, 王韶仲, 等.林分密度对水曲柳人工林吸收根生物量和根长密度的影响[J]. 东北林业大学学报,2014,42(9):1-5. doi: 10.3969/j.issn.1000-5382.2014.09.001

    XIE L Z, LI J N, WANG S Z, et al. Influence of stem density on absorptive root biomass and length density in Fraxinus mandshurica plantation[J]. Journal of Northeast Forestry University,2014,42(9):1-5. doi: 10.3969/j.issn.1000-5382.2014.09.001
    [26] PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees[J]. Ecological Monographs,2002,72(2):293-309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
    [27] MCCORMACK M L, DICKIE I A, EISSENSTAT D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist,2015,207(3):505-518. doi: 10.1111/nph.13363
    [28] 李建兴, 何丙辉, 谌芸, 等.不同护坡草本植物的根系分布特征及其对土壤抗剪强度的影响[J]. 农业工程学报,2013,29(10):144-152.

    LI J X, HE B H, CHEN Y, et al. Root distribution features of typical herb plants for slope protection and their effects on soil shear strength[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(10):144-152.
    [29] TRON S, BODNER G, LAIO F, et al. Can diversity in root architecture explain plant water use efficiency?a modeling study[J]. Ecological Modelling,2015,312:200-210. doi: 10.1016/j.ecolmodel.2015.05.028
    [30] GETTER K L, ROWE D B. Media depth influences Sedum green roof establishment[J]. Urban Ecosystems,2008,11(4):361-372. doi: 10.1007/s11252-008-0052-0
    [31] COMAS L H, BECKER S R, CRUZ V M V, et al. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science,2013,4:442.
    [32] LU J, YUAN J G, YANG J Z, et al. Effect of substrate depth on initial growth and drought tolerance of Sedum lineare in extensive green roof system[J]. Ecological Engineering,2015,74:408-414. doi: 10.1016/j.ecoleng.2014.11.018
    [33] 李建兴, 何丙辉, 谌芸.不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报,2013,33(5):1535-1544. doi: 10.5846/stxb201205170737

    LI J X, HE B H, CHEN Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration[J]. Acta Ecologica Sinica,2013,33(5):1535-1544. doi: 10.5846/stxb201205170737
    [34] 燕辉, 刘广全, 李红生.青杨人工林根系生物量、表面积和根长密度变化[J]. 应用生态学报,2010,21(11):2763-2768. doi: 10.13287/j.1001-9332.2010.0427

    YAN H, LIU G Q, LI H S. Changes of root biomass, root surface area, and root length density in a Populus cathayana plantation[J]. Chinese Journal of Applied Ecology,2010,21(11):2763-2768. doi: 10.13287/j.1001-9332.2010.0427
    [35] LU J R, ZHANG Q, WERNER A D, et al. Root-induced changes of soil hydraulic properties:a review[J]. Journal of Hydrology,2020,589:125203. doi: 10.1016/j.jhydrol.2020.125203
    [36] BENGOUGH A G, MCKENZIE B M, HALLETT P D, et al. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits[J]. Journal of Experimental Botany,2011,62(1):59-68. doi: 10.1093/jxb/erq350
    [37] KOEBERNICK N, DALY K R, KEYES S D, et al. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation[J]. New Phytologist,2017,216(1):124-135. doi: 10.1111/nph.14705
    [38] SCHOLL P, LEITNER D, KAMMERER G, et al. Root induced changes of effective 1D hydraulic properties in a soil column[J]. Plant and Soil,2014,381(1/2):193-213.
    [39] 杨荣金, 孙美莹, 张乐, 等.长江经济带生态环境保护的若干战略问题[J]. 环境科学研究,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36

    YANG R J, SUN M Y, ZHANG L, et al. Strategic issues of ecological environment protection in the Yangtze River Economic Belt[J]. Research of Environmental Sciences,2020,33(8):1795-1804. doi: 10.13198/j.issn.1001-6929.2020.05.36
    [40] 朱文彬, 孙倩莹, 李付杰, 等.厦门市城市绿地雨洪减排效应评价[J]. 环境科学研究,2019,32(1):74-84. doi: 10.13198/j.issn.1001-6929.2018.09.01

    ZHU W B, SUN Q Y, LI F J, et al. Assessment of the effect of urban green space landscape on reduction of storm water runoff in Xiamen City[J]. Research of Environmental Sciences,2019,32(1):74-84. doi: 10.13198/j.issn.1001-6929.2018.09.01
    [41] 王金南, 孙宏亮, 续衍雪, 等.关于“十四五”长江流域水生态环境保护的思考[J]. 环境科学研究,2020,33(5):1075-1080. doi: 10.13198/j.issn.1001-6929.2020.03.22

    WANG J N, SUN H L, XU Y X, et al. Water eco-environment protection framework in the Yangtze River Basin during the 14th Five-year Plan Period[J]. Research of Environmental Sciences,2020,33(5):1075-1080. ◇ doi: 10.13198/j.issn.1001-6929.2020.03.22
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  351
  • HTML全文浏览量:  172
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26

目录

    /

    返回文章
    返回