留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征

马建军 姚虹 刘辉 田美荣

马建军,姚虹,刘辉,等.燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征[J].环境工程技术学报,2023,13(1):270-279 doi: 10.12153/j.issn.1674-991X.20210791
引用本文: 马建军,姚虹,刘辉,等.燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征[J].环境工程技术学报,2023,13(1):270-279 doi: 10.12153/j.issn.1674-991X.20210791
MA J J,YAO H,LIU H,et al.Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of mining area in Yanshan Mountain[J].Journal of Environmental Engineering Technology,2023,13(1):270-279 doi: 10.12153/j.issn.1674-991X.20210791
Citation: MA J J,YAO H,LIU H,et al.Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of mining area in Yanshan Mountain[J].Journal of Environmental Engineering Technology,2023,13(1):270-279 doi: 10.12153/j.issn.1674-991X.20210791

燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征

doi: 10.12153/j.issn.1674-991X.20210791
基金项目: 河北省自然科学基金项目(C2020408015)
详细信息
    作者简介:

    马建军(1972—),男,副教授,主要从事受损生态系统的生态恢复研究,maandyao8184@163.com

    通讯作者:

    田美荣(1981—),女,研究员,主要从事环境科学与资源利用研究,tianmeirong007@ 163.com

  • 中图分类号: X171.4

Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of mining area in Yanshan Mountain

  • 摘要:

    为了揭示在极端恶劣矿区环境中,苜蓿对土壤改良的高效性、时效性和持续性,利用高通量测序技术,研究燕山矿区不同恢复时间(3、6、10和15年)苜蓿地土壤微生物群落结构及土壤养分累积特征。结果显示,苜蓿可以高效地提高土壤速效氮、速效钾、有机质等养分的浓度以及变形菌门、酸杆菌门、子囊菌门、担子菌门、鞘氨醇单胞菌科、伯克氏菌科、根瘤菌科、芽孢杆菌科、毛壳菌科和粉褶菌科等优势微生物类群的相对丰度。苜蓿对土壤养分的恢复以第6年为最佳;土壤优势微生物类群的相对丰度在第6年或第10年显著升高;苜蓿对细菌的恢复进度较快,而对真菌的恢复较慢。

     

  • 图  1  研究区及样地设置

    Figure  1.  Schematic diagram of study area and sample plots

    图  2  不同样地土壤AN、AP、AK及OM浓度

    注:不同的字母表示处理之间存在显著差异(n=7,P<0.05)。每个框中的点和线段分别表示数据组的平均值和中位数。盒体的顶部和底部分别代表数据组第75和第25个百分位数。上下垂直线段分别延伸到数据组的最大值和最小值。下同。

    Figure  2.  Concentrations of soil AN, AP, AK and OM in different sample plots

    图  3  不同样地优势细菌的相对丰度

    注:(a)为平均相对丰度大于7%的门;(b)为平均相对丰度大于2.5%的科。

    Figure  3.  Relative abundance of dominant bacteria in different sample plots

    图  4  不同样地优势真菌相对丰度

    注:图(a)为平均相对丰度大于2%的门;图(b)为平均相对丰度大于2.5%的科

    Figure  4.  Relative abundance of dominant fungi in different sample plots

    图  5  土壤微生物PCoA分析图

    Figure  5.  PCoA analysis of soil microorganisms

    表  1  样地基本情况

    Table  1.   Basic properties of the sample plots

    样地恢复
    时间/年
    主要植被
    CK1 0 此样地为2020年到位的采石场平台,已进行客土覆盖和平整,但未种植人工植被。以此样地作为苜蓿对土壤改良效果评价的起点。无植被
    Me3 3 人工植被苜蓿为优势种,本土一年生草本植物有狗尾草(Setaria viridis)、牛筋草(Eleusine indica)、藜(Chenopodium album)、一年蓬(Erigeron annuus)、豚草(Ambrosia artemisiifolia)等
    Me6 6 人工植被苜蓿为优势种,本土草本植物有狗尾草、荩草(Arthraxon hispidus)、黄背草(Themeda triandra)等
    Me10 10 人工植被苜蓿为优势种,本土草本植物有狗尾草、小飞蓬(Conyza canadensis)、黄背草、白羊草(Bothriochloa ischaemum)等
    Me15 15 初期种植的苜蓿有部分残余,本土灌木有荆条(Vitex negundo var. heterophylla)、沙枣(Elaeagnus angustifolia)、紫穗槐(Amorpha fruticosa)等。本土草本植物有黄背草、铁杆蒿(Artemisia gmelinii)、白羊草等
    CK2 原生境 此样地为未进行开采且人为干扰少的原生境。本土植物有荆条、黄背草、铁杆蒿、菱蒿(Artemisia giraldii)、白羊草等。以此样地作为苜蓿地土壤恢复的目标
    下载: 导出CSV

    表  2  基于Bray-Curtis距离算法的样地间土壤细菌/真菌的距离(dBCD)矩阵

    Table  2.   Distance matrix of soil bacteria / fungi between sample plots based on Bray-Curtis distance(dBCD) algorithm

    样地CK1Me3Me6Me10Me15
    细菌真菌细菌真菌细菌真菌细菌真菌细菌真菌
    Me30.15560.15800.00000.0000
    Me60.40440.20160.25330.19070.00000.0000
    Me100.52440.24520.30670.23430.11520.25610.00000.0000
    Me150.55110.57220.34630.36510.21780.47410.23780.31610.00000.0000
    CK20.59040.81640.42640.75210.24420.67580.20890.59350.11550.3542
    下载: 导出CSV
  • [1] 白中科, 师学义, 周伟, 等.人工如何支持引导生态系统自然修复[J]. 中国土地科学,2020,34(9):1-9. doi: 10.11994/zgtdkx.20200918.123606

    BAI Z K, SHI X Y, ZHOU W, et al. How does artificiality support and guide the natural restoration of ecosystems[J]. China Land Science,2020,34(9):1-9. doi: 10.11994/zgtdkx.20200918.123606
    [2] 易行, 白彩全, 梁龙武, 等.国土生态修复研究的演进脉络与前沿进展[J]. 自然资源学报,2020,35(1):37-52. doi: 10.31497/zrzyxb.20200105

    YI X, BAI C Q, LIANG L W, et al. The evolution and frontier development of land ecological restoration research[J]. Journal of Natural Resources,2020,35(1):37-52. doi: 10.31497/zrzyxb.20200105
    [3] KNOPS J M H, TILMAN D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment[J]. Ecology,2000,81(1):88-98. doi: 10.1890/0012-9658(2000)081[0088:DOSNAC]2.0.CO;2
    [4] SONG X, FANG C, YUAN Z Q, et al. Long-term growth of alfalfa increased soil organic matter accumulation and nutrient mineralization in a semi-arid environment[J]. Frontiers in Environmental Science,2021,9:649346. doi: 10.3389/fenvs.2021.649346
    [5] VITOUSEK P M, MENGE D N L, REED S C, et al. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences,2013,368(1621):20130119. doi: 10.1098/rstb.2013.0119
    [6] HU G Z, LIU H Y, YIN Y, et al. The role of legumes in plant community succession of degraded grasslands in northern China[J]. Land Degradation & Development,2016,27(2):366-372.
    [7] WICK B, KUHNE R F, VLEK P. Soil microbiological parameters as indicators of soil quality under improved fallow management systems in south western Nigeria[J]. Plant Soil,1998,202(1):97-107. doi: 10.1023/A:1004305615397
    [8] 吴旭东, 张晓娟, 谢应忠, 等.不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征[J]. 草业学报,2013,22(1):245-251. doi: 10.11686/cyxb20130129

    WU X D, ZHANG X J, XIE Y Z, et al. Vertical distribution characters of soil organic carbon and soil enzyme activity in alfalfa field with different growing years[J]. Acta Prataculturae Sinica,2013,22(1):245-251. doi: 10.11686/cyxb20130129
    [9] HE H H, PENG Q, WANG X, et al. Growth, morphological and physiological responses of alfalfa (Medicago sativa) to phosphorus supply in two alkaline soils[J]. Plant and Soil,2017,416(1/2):565-584.
    [10] 李裕元, 邵明安.黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J]. 应用生态学报,2005,16(12):2321-2327. doi: 10.3321/j.issn:1001-9332.2005.12.019

    LI Y Y, SHAO M A. Degradation process and plant diversity of alfalfa grassland in north Loess Plateau of China[J]. Chinese Journal of Applied Ecology,2005,16(12):2321-2327. doi: 10.3321/j.issn:1001-9332.2005.12.019
    [11] 杨玉海, 蒋平安.不同种植年限苜蓿地土壤理化特性研究[J]. 水土保持学报,2005,19(2):110-113. doi: 10.3321/j.issn:1009-2242.2005.02.029

    YANG Y H, JIANG P A. Studies on soil properties of lucerne with different cultivating ages[J]. Journal of Soil Water Conservation,2005,19(2):110-113. doi: 10.3321/j.issn:1009-2242.2005.02.029
    [12] 陈志怡, 李金月.不同生长年限对紫花苜蓿产量及土壤养分的影响[J]. 山东农业大学学报(自然科学版),2015,46(2):214-220.

    CHEN Z Y, LI J Y. Effects of growth years on the yield of Medicago sativa L. and soil nutrient[J]. Journal of Shandong Agricultural University (Natural Science Edition),2015,46(2):214-220.
    [13] 叶春和.紫花苜蓿对铅污染土壤修复能力及其机理的研究[J]. 土壤与环境,2002,11(4):331-334.

    YE C H. Phytoremediation of Pb-contaminated soil with alfalfa: capacity and mechanisms[J]. Soil and Environmental Sciences,2002,11(4):331-334.
    [14] 麻冬梅, 金风霞, 蒙静, 等.不同种植年限苜蓿对土壤理化性质、微生物群落和苜蓿品质的影响[J]. 水土保持研究,2013,20(5):29-32.

    MA D M, JIN F X, MENG J, et al. Effects of alfalfa with different growth years on the soil physical and chemical properties, soil microbial, forage quality[J]. Research of Soil and Water Conservation,2013,20(5):29-32.
    [15] 牟红霞, 张文文, 刘秉儒.引黄灌区不同种植年限紫花苜蓿土壤真菌群落多样性特征[J]. 水土保持研究,2021,28(4):91-96. doi: 10.13869/j.cnki.rswc.2021.04.013

    MOU H X, ZHANG W W, LIU B R. Soil fungi community diversity in Medicago sativa field of different planting years at Yellow River diversion irrigation area[J]. Research of Soil and Water Conservation,2021,28(4):91-96. doi: 10.13869/j.cnki.rswc.2021.04.013
    [16] 王东丽, 刘阳, 郭莹莹, 等.半干旱矿区排土场苜蓿恢复过程中土壤颗粒分形的演变特征[J]. 生态学报,2020,40(13):4585-4593.

    WANG D L, LIU Y, GUO Y Y, et al. The fractal characteristics of soil particles during the restoration of Medicago sativa in a semi-arid mining dump[J]. Acta Ecologica Sinica,2020,40(13):4585-4593.
    [17] 南京农业大学. 土壤农化分析[M]. 2版. 北京: 农业出版社, 1988.
    [18] MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics (Oxford, England),2011,27(21):2957-2963. doi: 10.1093/bioinformatics/btr507
    [19] EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,2013,10(10):996-998. doi: 10.1038/nmeth.2604
    [20] KÕLJALG U, NILSSON R H, ABARENKOV K, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology,2013,22(21):5271-5277. doi: 10.1111/mec.12481
    [21] 刘爽, 王雅, 刘兵兵, 等.晋西北不同土地管理方式对土壤碳氮、酶活性及微生物的影响[J]. 生态学报,2019,39(12):4376-4389.

    LIU S, WANG Y, LIU B B, et al. Effects of different land management practices on soil carbon and nitrogen, enzyme activities, and microbial diversities northwest of Shanxi[J]. Acta Ecologica Sinica,2019,39(12):4376-4389.
    [22] 杨智姣, 温晨, 杨磊, 等.半干旱黄土小流域不同恢复方式对生态系统多功能性的影响[J]. 生态学报,2020,40(23):8606-8617.

    YANG Z J, WEN C, YANG L, et al. Effects of different restoration methods on ecosystem multifunctionality in the semi-arid loess small watershed[J]. Acta Ecologica Sinica,2020,40(23):8606-8617.
    [23] 罗珠珠, 李玲玲, 牛伊宁, 等.陇中黄土高原半干旱区苜蓿地土壤干燥化特征及适宜种植年限[J]. 应用生态学报,2015,26(10):3059-3065. doi: 10.13287/j.1001-9332.20150921.010

    LUO Z Z, LI L L, NIU Y N, et al. Soil dryness characteristics of alfalfa cropland and optimal growth years of alfalfa on the Loess Plateau of central Gansu, China[J]. Chinese Journal of Applied Ecology,2015,26(10):3059-3065. doi: 10.13287/j.1001-9332.20150921.010
    [24] 李天琦, 赵力兴, 林志玲, 等.灌溉量对科尔沁沙地紫花苜蓿产量和水分利用效率的影响[J]. 中国草地学报,2020,42(2):117-123.

    LI T Q, ZHAO L X, LIN Z L, et al. Effects of irrigation amount on alfalfa yield and water use efficiency in Horqin sandy land[J]. Chinese Journal of Grassland,2020,42(2):117-123.
    [25] 郭彦军, 倪郁, 韩建国, 等.开垦草原与种植紫花苜蓿对土壤磷素有效性的影响[J]. 水土保持学报,2009,23(1):88-92. doi: 10.3321/j.issn:1009-2242.2009.01.019

    GUO Y J, NI Y, HAN J G, et al. Effects of steppe cultivation and alfalfa plantation on the availability of soil phosphorus[J]. Journal of Soil and Water Conservation,2009,23(1):88-92. doi: 10.3321/j.issn:1009-2242.2009.01.019
    [26] 赵金召, 张兆长, 王振华.三河市废弃露天矿山生态景观治理模式分析: 以东部矿区为例[J]. 陕西建筑,2020(6):24-28.
    [27] 王彦龙, 俞旸, 张春平, 等.种植紫花苜蓿对柴达木盆地高寒荒漠区弃耕地盐碱土壤的改良作用[J]. 青海畜牧兽医杂志,2020,50(5):22-26. doi: 10.3969/j.issn.1003-7950.2020.05.004

    WANG Y L, YU M, ZHANG C P, et al. Effect of alfalfa on amendment of saline-alkaline soil on abandoned farmland in Qaidam Basin[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences,2020,50(5):22-26. doi: 10.3969/j.issn.1003-7950.2020.05.004
    [28] 邰继承, 杨恒山, 张庆国, 等.种植年限对紫花苜蓿人工草地土壤碳、氮含量及根际土壤固氮力的影响[J]. 土壤通报,2010,41(3):603-607.

    TAI J C, YANG H S, ZHANG Q G, et al. Influence of planting years on nitrogen-fixing capacity of rhizosphere and contents of carbon and nitrogen in artificial pastures of alfalfa[J]. Chinese Journal of Soil Science,2010,41(3):603-607.
    [29] AN S S, CHENG Y, HUANG Y M, et al. Effects of revegetation on soil microbial biomass, enzyme activities, and nutrient cycling on the Loess Plateau in China[J]. Restoration Ecology,2013,21(5):600-607. doi: 10.1111/j.1526-100X.2012.00941.x
    [30] 张萌萌, 敖红, 张景云, 等.建植年限对紫花苜蓿根际土壤微生物群落功能多样性的影响[J]. 草业科学,2014,31(5):787-796. doi: 10.11829/j.issn.1001-0629.2013-0424

    ZHANG M M, AO H, ZHANG J Y, et al. Effects of planting years on functional diversity of carbon-metabolic microbial community in rhizosphere soils of alfalfa[J]. Pratacultural Science,2014,31(5):787-796. doi: 10.11829/j.issn.1001-0629.2013-0424
    [31] 张宝泉, 李红红, 马虎, 等.渭北旱塬区不同年限苜蓿对土壤主要养分及微生物量的影响[J]. 草地学报,2015,23(6):1190-1196.

    ZHANG B Q, LI H H, MA H, et al. Effects of Medicago sativa on soil nutrients and microbial biomass under different years in the arid area of northern Weihe River Basin[J]. Acta Agrestia Sinica,2015,23(6):1190-1196.
    [32] 岳彩娟, 李生宝, 蔡进军, 等.刈割对紫花苜蓿的补偿效应研究进展[J]. 农业科学研究,2009,30(4):73-77. doi: 10.3969/j.issn.1673-0747.2009.04.019

    YUE C J, LI S B, CAI J J, et al. Research progress of clipping effect on compensating growth reflection on alfalfa[J]. Journal of Agricultural Sciences,2009,30(4):73-77. doi: 10.3969/j.issn.1673-0747.2009.04.019
    [33] 刘洋, 黄懿梅, 曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学,2016,37(10):3931-3938.

    LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the Loess Plateau[J]. Environmental Science,2016,37(10):3931-3938.
    [34] LI J, ZHANG J, LIU L, et al. Annual periodicity in planktonic bacterial and archaeal community composition of eutrophic Lake Taihu[J]. Scientific Reports, 2015, 5: 15488.
    [35] ZHANG C, LIU G B, XUE S, et al. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau[J]. Soil Biology and Biochemistry,2016,97:40-49. doi: 10.1016/j.soilbio.2016.02.013
    [36] LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry,2014,70:113-122. doi: 10.1016/j.soilbio.2013.12.014
    [37] 吕燕红, 赵瑛, 张艳萍.甘肃民勤荒漠区两种主要固沙植物影响下的土壤细菌群落分布特征研究[J]. 生态环境学报,2020,29(4):717-724.

    LÜ Y H, ZHAO Y, ZHANG Y P. Research on the distribution characteristics of soil bacteria communities under the influence of two main sand-fixing plants in Minqin desert area of Gansu Province[J]. Ecology and Environmental Sciences,2020,29(4):717-724.
    [38] NESSNER KAVAMURA V, TAKETANI R G, LANÇONI M D, et al. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian caatinga biome[J]. PLoS One,2013,8(9):e73606. doi: 10.1371/journal.pone.0073606
    [39] 季秀玲, 杨琳琳, 李波, 等.北衙金矿矿石内部可培养细菌多样性初步研究[J]. 中国微生态学杂志,2014,26(2):157-162.

    JI X L, YANG L L, LI B, et al. Diversity of culturable bacteria inside the ore from Beiya gold deposit: a preliminary study[J]. Chinese Journal of Microecology,2014,26(2):157-162.
    [40] 于方明, 姚亚威, 谢冬煜, 等.泗顶矿区6种土地利用类型土壤微生物群落结构特征[J]. 中国环境科学,2020,40(5):2262-2269. doi: 10.3969/j.issn.1000-6923.2020.05.049

    YU F M, YAO Y W, XIE D Y, et al. Study on the soil microbial community structure associated with six land use in Siding mining area[J]. China Environmental Science,2020,40(5):2262-2269. doi: 10.3969/j.issn.1000-6923.2020.05.049
    [41] ZHANG J, WANG P C, TIAN H M, et al. Pyrosequencing-based assessment of soil microbial community structure and analysis of soil properties with vegetable planted at different years under greenhouse conditions[J]. Soil and Tillage Research,2019,187:1-10. doi: 10.1016/j.still.2018.11.008
    [42] 丁翠. 酸性矿山废水污染胁迫下稻田土壤微生物菌群的演替[D]. 广州: 华南理工大学, 2019.
    [43] AL-SADI A M. High fungal diversity and dominance by ascomycota in dam reservoir soils of arid climates[J]. International Journal of Agriculture and Biology,2017,19(4):682-688. doi: 10.17957/IJAB/15.0328
    [44] YANG Y, DOU Y X, HUANG Y M, et al. Links between soil fungal diversity and plant and soil properties on the Loess Plateau[J]. Frontiers in Microbiology,2017,8:2198. doi: 10.3389/fmicb.2017.02198
    [45] 李振江, 沈有信, 赵高卷, 等.森林母土异地迁播后的土壤真菌和细菌变化[J]. 微生物学通报,2020,47(10):3196-3205.

    LI Z J, SHEN Y X, ZHAO G J, et al. Changes of soil fungi and bacteria after forest mother soil transplantation[J]. Microbiology China,2020,47(10):3196-3205.
    [46] 张树萌, 黄懿梅, 倪银霞, 等.宁南山区人工林草对土壤真菌群落的影响[J]. 中国环境科学,2018,38(4):1449-1458. doi: 10.3969/j.issn.1000-6923.2018.04.031

    ZHANG S M, HUANG Y M, NI Y X, et al. Effects of artificial forest and grass on soil fungal community at southern Ningxia Mountain[J]. China Environmental Science,2018,38(4):1449-1458. doi: 10.3969/j.issn.1000-6923.2018.04.031
    [47] de BOER W, FOLMAN L B, SUMMERBELL R C, et al. Living in a fungal world: impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews,2005,29(4):795-811. doi: 10.1016/j.femsre.2004.11.005
    [48] MA A Z, ZHUANG X L, WU J M, et al. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. PLoS One,2013,8(6):e66146. doi: 10.1371/journal.pone.0066146
    [49] 邵志敏. 海州露天矿生态恢复过程中土壤真菌群落演替规律研究[D]. 阜新: 辽宁工程技术大学, 2019.
    [50] 王海英, 郭守玉, 黄满荣, 等.子囊菌较担子菌具有更快的进化速率和更高的物种多样性[J]. 中国科学:生命科学,2010,40(8):731-737.
    [51] HIBBETT D S, BINDER M, BISCHOFF J F, et al. A higher-level phylogenetic classification of the fungi[J]. Mycological Research,2007,111(5):509-547. doi: 10.1016/j.mycres.2007.03.004
    [52] FRÖHLICH-NOWOISKY J, PICKERSGILL D A, DESPRÉS V R, et al. High diversity of fungi in air particulate matter[J]. PNAS,2009,106(31):12814-12819. doi: 10.1073/pnas.0811003106
    [53] AMEND A S, SEIFERT K A, SAMSON R, et al. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(31):13748-13753. doi: 10.1073/pnas.1000454107
    [54] YUAN J, WEN T, ZHANG H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME Journal,2020,14(12):2936-2950. doi: 10.1038/s41396-020-0720-5
    [55] DANGI S R, STAHL P D, WICK A F, et al. Soil microbial community recovery in reclaimed soils on a surface coal mine site[J]. Soil Science Society of America Journal,2012,76(3):915-924. doi: 10.2136/sssaj2011.0288
    [56] de VRIES F T, GRIFFITHS R I, BAILEY M, et al. Soil bacterial networks are less stable under drought than fungal networks[J]. Nature Communications, 2018, 9: 3033.
    [57] WANG Y J, LIU L, TIAN Y L, et al. Temporal and spatial variation of soil microorganisms and nutrient under white clover cover[J]. Soil and Tillage Research,2020,202:104666. doi: 10.1016/j.still.2020.104666
    [58] HARRIS J. Soil microbial communities and restoration ecology: facilitators or followers[J]. Science,2009,325:573-574. ⊗ doi: 10.1126/science.1172975
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  353
  • HTML全文浏览量:  155
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05

目录

    /

    返回文章
    返回