留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α-Fe2O3催化臭氧氧化耦合陶瓷膜处理含酚废水

王勇 张耀宗 毕莹莹 杜明辉 孙晓明

王勇,张耀宗,毕莹莹,等.α-Fe2O3催化臭氧氧化耦合陶瓷膜处理含酚废水[J].环境工程技术学报,2023,13(1):232-239 doi: 10.12153/j.issn.1674-991X.20210816
引用本文: 王勇,张耀宗,毕莹莹,等.α-Fe2O3催化臭氧氧化耦合陶瓷膜处理含酚废水[J].环境工程技术学报,2023,13(1):232-239 doi: 10.12153/j.issn.1674-991X.20210816
WANG Y,ZHANG Y Z,BI Y Y,et al.α-Fe2O3 catalytic ozonation coupled with ceramic membrane for phenol wastewater treatment[J].Journal of Environmental Engineering Technology,2023,13(1):232-239 doi: 10.12153/j.issn.1674-991X.20210816
Citation: WANG Y,ZHANG Y Z,BI Y Y,et al.α-Fe2O3 catalytic ozonation coupled with ceramic membrane for phenol wastewater treatment[J].Journal of Environmental Engineering Technology,2023,13(1):232-239 doi: 10.12153/j.issn.1674-991X.20210816

α-Fe2O3催化臭氧氧化耦合陶瓷膜处理含酚废水

doi: 10.12153/j.issn.1674-991X.20210816
基金项目: 国家水体污染控制与治理科技重大专项(2017ZX07402-002),国家环境保护生态工业重点实验室开放基金(2022KFF-15),中央级公益性科研院所基本科研业务费专项(2022YSKY-09)
详细信息
    作者简介:

    王勇(1997—),男,硕士研究生,主要从事水污染控制与废水资源化研究,1833055310@qq.com

    通讯作者:

    孙晓明(1978—),男,研究员,博士,主要从事水污染控制与废水资源化研究,sunxm52@126.com

  • 中图分类号: X703

α-Fe2O3 catalytic ozonation coupled with ceramic membrane for phenol wastewater treatment

  • 摘要:

    催化臭氧氧化是处理含酚废水的有效手段,为研究α-Fe2O3催化氧化含酚废水的降解效能同时有效回收催化剂,采用微米级α-Fe2O3催化臭氧氧化苯酚模拟废水,并耦合陶瓷膜对分散在反应体系的催化剂进行截留、回收,实现工艺的连续运行。结果表明:在间歇运行条件下,催化氧化反应30 min时废水COD去除率达到97%以上,高COD去除率的主要原因是α-Fe2O3对臭氧具有较强的催化活性,在催化氧化过程中产生了强氧化性产物·OH;在恒压条件下,通过膜污染模型拟合和串联阻力模型进行验证,Rr占总阻力的50%以上,但当操作压力超过30 kPa,一部分可逆污染向不可逆污染逐渐转化,Rir显著增加;通过动力学拟合探究膜污染形成机制,运行过程中陶瓷膜污染模型为中间堵塞或滤饼堵塞,膜污染主要发生在膜表面,膜可以对α-Fe2O3进行有效拦截并通过反冲洗恢复通量;连续进水6个周期运行过程中,模拟废水COD去除率保持在85%以上,陶瓷膜不可逆阻力控制在总阻力的13%以下,反应体系保持了稳定运行。

     

  • 图  1  试验装置

    1—氧气瓶;2—臭氧发生器;3—臭氧浓度检测器;4—反应器;5—粉末催化剂/废水混合体系;6—陶瓷膜;7—曝气头;8—磁转子;9—磁力搅拌器;10—集水瓶;11—电子天平;12—给水池;13—水泵。

    Figure  1.  Experimental apparatus

    图  2  膜污染堵塞模型

    Figure  2.  Membrane fouling blocking model

    图  3  催化氧化效果

    Figure  3.  Catalytic oxidation effect

    图  4  α-Fe2O3和陶瓷膜吸附去除COD差异

    Figure  4.  Difference of COD removal by α-Fe2O3 and ceramic membrane adsorption

    图  5  催化氧化和陶瓷膜对O3的分解作用

    Figure  5.  Catalytic oxidation and decomposition of ozone by ceramic membrane

    图  6  TBA捕获·OH对COD去除率的影响

    Figure  6.  Effect of TBA capture ·OH on COD removal rate

    图  7  操作压力对纯水渗透通量的影响

    Figure  7.  Effect of operating pressure on pure water permeation flux

    图  8  操作压力对陶瓷膜过滤影响

    Figure  8.  Effect of operating pressure on ceramic membrane filtration

    图  9  膜污染堵塞模型拟合结果

    Figure  9.  Fitting results of membrane fouling blockage model

    图  10  连续进水过程COD去除率和陶瓷膜阻力变化

    Figure  10.  COD removal rate and ceramic membrane resistance change in continuous influent process

    表  1  膜堵塞模型公式

    Table  1.   Formula of membrane blocking model

    污染模型模型公式
    完全堵塞$\dfrac{P}{ { {P_0} } } = \dfrac{1}{ {1 - {k_{\rm{b}}}t} }$
    中间堵塞$\dfrac{P}{ { {P_0} } } = \exp ({k_{\rm{i}}}{J_0}t)$
    滤饼堵塞$\dfrac{P}{ { {P_0} } } = 1 + {k_{\rm{c}}}{J_0}^2t$
    标准堵塞$\dfrac{P}{ { {P_0} } } = {\left(1 - \dfrac{ { {k_{\rm{s}}}{J_0}t} }{2}\right)^{ - 2} }$
      注:PP0当前状态的跨膜压差(TMP),kPa;$ {k_{\rm{b}}} $、${k_{\rm{i}}}$、$ {k_{\rm{c}}} $及$ {k_{\rm{s}}} $为污染模型的拟合参数。
    下载: 导出CSV

    表  2  催化氧化准一级动力学参数

    Table  2.   Pseudo-first-order kinetics parameters of catalytic oxidation

    反应条件动力学参数
    k/s−1R2S
    O3−0.1100.9860.993
    O3-膜−0.1180.9870.993
    O3-α-Fe2O3−0.3040.9900.995
    O3-α-Fe2O3-膜−0.3560.9940.997
    下载: 导出CSV

    表  3  连续运行过程COD去除率变化

    Table  3.   Change of COD removal rate during continuous operation

    时间/min306090120150180
    COD去除率/%86.9186.2585.2886.3386.1386.01
    下载: 导出CSV
  • [1] WU J F, SU T M, JIANG Y X, et al. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde[J]. Applied Surface Science,2017,412:290-305. doi: 10.1016/j.apsusc.2017.03.237
    [2] DENG S H, JOTHINATHAN L, CAI Q Q, et al. FeOx@GAC catalyzed microbubble ozonation coupled with biological process for industrial phenolic wastewater treatment: catalytic performance, biological process screening and microbial characteristics[J]. Water Research,2021,190:116687. doi: 10.1016/j.watres.2020.116687
    [3] LI X F, CHEN W Y, MA L M, et al. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst[J]. Chemosphere,2018,195:336-343. doi: 10.1016/j.chemosphere.2017.12.080
    [4] MECHA A C, CHOLLOM M N. Photocatalytic ozonation of wastewater: a review[J]. Environmental Chemistry Letters,2020,18(5):1491-1507. doi: 10.1007/s10311-020-01020-x
    [5] EINAGA H, MAEDA N, NAGAI Y. Comparison of catalytic properties of supported metal oxides for benzene oxidation using ozone[J]. Catalysis Science & Technology,2015,5(6):3147-3158.
    [6] 任越中, 张嘉雯, 魏健, 等.铈负载改性天然沸石催化臭氧氧化水中青霉素G[J]. 环境工程技术学报,2019,9(1):28-35. doi: 10.3969/j.issn.1674-991X.2019.01.005

    REN Y Z, ZHANG J W, WEI J, et al. Catalytic ozonation of penicillin G in aqueous phase using modified natural zeolite supported cerium[J]. Journal of Environmental Engineering Technology,2019,9(1):28-35. doi: 10.3969/j.issn.1674-991X.2019.01.005
    [7] 付丽亚, 吴昌永, 周鉴, 等.3种一体式臭氧-BAF工艺对石化废水生化出水有机物去除特性比较研究[J]. 环境工程技术学报,2021,11(1):135-143. doi: 10.12153/j.issn.1674-991X.20200061

    FU L Y, WU C Y, ZHOU J, et al. Comparison study of organics removal characteristics by three kinds of integrated ozone-BAF processes treating biochemical effluent of petrochemical wastewater[J]. Journal of Environmental Engineering Technology,2021,11(1):135-143. doi: 10.12153/j.issn.1674-991X.20200061
    [8] 李亚男, 谭煜, 吴昌永, 等.臭氧催化氧化在石化废水深度处理应用中的若干问题[J]. 环境工程技术学报,2019,9(3):275-281. doi: 10.12153/j.issn.1674-991X.2019.02.280

    LI Y N, TAN Y, WU C Y, et al. Application and problems of catalytic ozonation in advanced treatment of petrochemical wastewater[J]. Journal of Environmental Engineering Technology,2019,9(3):275-281. doi: 10.12153/j.issn.1674-991X.2019.02.280
    [9] YANG W W, LU Z, VOGLER B, et al. Enhancement of copper catalyst stability for catalytic ozonation in water treatment using ALD overcoating[J]. ACS Applied Materials & Interfaces,2018,10(50):43323-43326.
    [10] LIANG X S, WANG L S, WEN T C, et al. Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition[J]. Science of the Total Environment,2022,804:150161. doi: 10.1016/j.scitotenv.2021.150161
    [11] TAN X Q, WAN Y F, HUANG Y J, et al. Three-dimensional MnO2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A[J]. Journal of Hazardous Materials,2017,321:162-172. doi: 10.1016/j.jhazmat.2016.09.013
    [12] WANG B, XIONG X, REN H Y, et al. Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation[J]. RSC Advances,2017,7(69):43464-43473. doi: 10.1039/C7RA07553G
    [13] LIN F W, WANG Z H, MA Q, et al. Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst[J]. Applied Catalysis B:Environmental,2016,198:100-111. doi: 10.1016/j.apcatb.2016.05.058
    [14] HOU S, JIA S Y, JIA J J, et al. Fe3O4 nanoparticles loading on cow dung based activated carbon as an efficient catalyst for catalytic microbubble ozonation of biologically pretreated coal gasification wastewater[J]. Journal of Environmental Management,2020,267:110615. doi: 10.1016/j.jenvman.2020.110615
    [15] EINAGA H, OGATA A. Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions[J]. Journal of Hazardous Materials,2009,164(2/3):1236-1241.
    [16] RAYATI S, POURNASER N, NEJABAT F, et al. Aerobic oxidation of cyclohexene over Mn-porphyrin based nanocatalyst: supported vs unsupported catalyst[J]. Inorganic Chemistry Communications,2019,107:107447. doi: 10.1016/j.inoche.2019.107447
    [17] XIONG W, CHEN N, FENG C P, et al. Ozonation catalyzed by iron- and/or manganese-supported granular activated carbons for the treatment of phenol[J]. Environmental Science and Pollution Research International,2019,26(20):21022-21033. doi: 10.1007/s11356-019-05304-w
    [18] DANG T T, DO V M, TRINH V T. Nano-catalysts in ozone-based advanced oxidation processes for wastewater treatment[J]. Current Pollution Reports,2020,6(3):217-229. doi: 10.1007/s40726-020-00147-3
    [19] 陈天翼, 李根, 王卓, 等.粉末活性炭-陶瓷膜臭氧催化氧化深度处理煤气化废水研究[J]. 水处理技术,2018,44(2):80-83. doi: 10.16796/j.cnki.1000-3770.2018.02.019

    CHEN T Y, LI G, WANG Z, et al. Advanced treatment of coal gasification wastewater by powdered activated carbon-ceramic membrane catalytic ozonation[J]. Technology of Water Treatment,2018,44(2):80-83. doi: 10.16796/j.cnki.1000-3770.2018.02.019
    [20] ZHONG Z X, LI D Y, LIU X, et al. The fouling mechanism of ceramic membranes used for recovering TS-1 catalysts[J]. Chinese Journal of Chemical Engineering,2009,17(1):53-57. doi: 10.1016/S1004-9541(09)60032-X
    [21] WU Z J, HOU Y Q, LI X M, et al. Pilot study on catalyzed oxidation-ceramic membrane-high pressure reverse osmosis for desulfurization wastewater recovery[J]. IOP Conference Series:Earth and Environmental Science,2021,668(1):012033. doi: 10.1088/1755-1315/668/1/012033
    [22] ZHANG J L, YU H T, QUAN X, et al. Ceramic membrane separation coupled with catalytic ozonation for tertiary treatment of dyestuff wastewater in a pilot-scale study[J]. Chemical Engineering Journal,2016,301:19-26. doi: 10.1016/j.cej.2016.04.148
    [23] di LUCA C, INCHAURRONDO N, MARCÉ M, et al. On disclosing the role of mesoporous alumina in the ozonation of sulfamethoxazole: adsorption vs. catalysis[J]. Chemical Engineering Journal,2021,412:128579. doi: 10.1016/j.cej.2021.128579
    [24] LUO X, SU T M, XIE X L, et al. The adsorption of ozone on the solid catalyst surface and the catalytic reaction mechanism for organic components[J]. ChemistrySelect,2020,5(48):15092-15116. doi: 10.1002/slct.202003805
    [25] RUIZ J A, RODRÍGUEZ J L, POZNYAK T, et al. Catalytic effect of γ-Al(OH)3, α-FeOOH, and α-Fe2O3 on the ozonation-based decomposition of diethyl phthalate adsorbed on sand and soil[J]. Environmental Science and Pollution Research,2021,28(1):974-981. doi: 10.1007/s11356-020-10522-8
    [26] MEHANDJIEV D, NAIDENOV A. Ozone decomposition on α-Fe2O3 catalyst[J]. Ozone:Science & Engineering,1992,14(4):277-282.
    [27] LI Y, WU L C, WANG Y, et al. γ-Al2O3 doped with cerium to enhance electron transfer in catalytic ozonation of phenol[J]. Journal of Water Process Engineering,2020,36:101313. doi: 10.1016/j.jwpe.2020.101313
    [28] WITKOWSKI B, JURDANA S, GIERCZAK T. Limononic acid oxidation by hydroxyl radicals and ozone in the aqueous phase[J]. Environmental Science & Technology,2018,52(6):3402-3411.
    [29] MIKULÁŠEK P, DOLEČEK P, ŠMÍDOVÁ D, et al. Crossflow microfiltration of mineral dispersions using ceramic membranes[J]. Desalination,2004,163(1/2/3):333-343.
    [30] OLIVEIRA NETO G L, OLIVEIRA N G N, DELGADO J M P Q, et al. A new design of tubular ceramic membrane module for oily water treatment: multiphase flow behavior and performance evaluation[J]. Membranes,2020,10(12):403. doi: 10.3390/membranes10120403
    [31] DERISZADEH A, HUSEIN M M, HARDING T G. Produced water treatment by micellar-enhanced ultrafiltration[J]. Environmental Science & Technology,2010,44(5):1767-1772.
    [32] XU J, CHANG C Y, GAO C J. Performance of a ceramic ultrafiltration membrane system in pretreatment to seawater desalination[J]. Separation and Purification Technology,2010,75(2):165-173. doi: 10.1016/j.seppur.2010.07.020
    [33] WANG X L, LI Y L, YU H T, et al. High-flux robust ceramic membranes functionally decorated with nano-catalyst for emerging micro-pollutant removal from water[J]. Journal of Membrane Science,2020,611:118281. doi: 10.1016/j.memsci.2020.118281
    [34] YAN L Q, BING J S, WU H C. The behavior of ozone on different iron oxides surface sites in water[J]. Scientific Reports,2019,9:14752. ⊗ doi: 10.1038/s41598-019-50910-w
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  129
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-09

目录

    /

    返回文章
    返回