Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag
-
摘要:
提出了一种新型的高炉渣质能耦合处理系统,实现了高炉渣余热的高效回收和渣中组分的高附加值利用。采用生命周期评价和生命周期成本方法,分别计算出系统的环境影响和经济成本,并对其资源能源消耗进行核算。通过主要贡献者的识别,追溯系统在环境影响、经济成本以及资源能源消耗方面的主要来源;通过综合表现评估以及敏感性分析,确定系统优化的关键单元。此外,基于系统特性分析了其在环境、能源以及经济方面的效益。结果表明:1)系统的环境影响主要是全球变暖(贡献率为47.68%),经济成本主要是内部成本(贡献率为91.89%),资源能源消耗主要是非能源资源(贡献率为98.57%);2)系统优化的关键单元是预处理,关键输入是HCl;3)充分考虑系统特性后,处理1 t高炉渣的CO2净排放量为−6 098.68 kg,净能耗为−682.68 MJ,经济成本为2 078.24元。
Abstract:A novel mass-energy coupling treatment system for blast furnace slag was proposed, which realized efficient recovery of waste heat in slag and high value-added utilization of slag components. The methods of life cycle assessment and life cycle cost were adopted to calculate the environmental impact and economic cost of the system. The resource and energy consumption included were also calculated. Main sources in terms of environmental impact, economic cost and resource and energy consumption of the system were traced through the identification of main contributors. The key elements to system optimization were determined through the comprehensive performance evaluation and sensitivity analysis. Besides, the environmental, energy and economic benefits of the system were analyzed based on its characteristics. The results showed that: 1) The environmental impact of the system was mainly global warming (with a contribution rate of 47.68%), the economic cost was mainly internal cost (with a contribution rate of 91.89%), and the resource consumption was mainly non-energy resources (with a contribution rate of 98.57%). 2) The key unit to system optimization was pretreatment and the key input was HCl. 3) For each ton of slag treated, the net CO2 emission was −6 098.68 kg, the net energy consumption was −682.68 MJ and the economic cost was 2 078.24 yuan after a full consideration of system characteristics.
-
项目 总量 单元 化学余热回收 物理余热回收 预处理 制沸石 制类水滑石 能源消耗 电力/(kW·h) 131.95 4.40 0.75 21.20 50.02 55.58 资源消耗 HCl/kg 1 752 0 0 1 752 0 0 NaOH/kg 680 0 0 0 270 410 NaAlO2/kg 80 0 0 0 80 0 煤/kg 40.41 40.41 0 0 0 0 水/kg 274.51 77.94 196.57 0 0 0 环境排放 CO2/kg 1 501.38 4.22 0.72 720.03 466.80 309.61 Cl2/kg 3.33 0 0 3.33 0 0 CH4/kg 2.962 0.01 0.002 2.25 0.53 0.17 NOx/kg 3.832 0.01 0.002 2.25 0.90 0.67 颗粒物/kg 6.275 0.03 0.005 5.25 0.60 0.39 SO2/kg 4.353 0.02 0.003 3 1.10 0.23 CO/kg 0.08 0 0 0 0.08 0 N2/kg 33.29 0 0 33.29 0 0 N2O/kg 0.02 0 0 0 0.01 0.01 SOx/kg 0.05 0 0 0 0.02 0.03 烃类/kg 0.08 0 0 0 0.06 0.02 表 2 生命周期成本构成
Table 2. Components of life cycle cost
成本类型 次级成本类型 成本来源 内部成本 材料成本 HCl NaOH NaAlO2 煤 水 能源成本 电力 外部成本 污染成本 CO2排放 表 3 不同单元对各环境指标的贡献
Table 3. Contribution of each unit to each environmental indicator
环境指标 不同单元贡献 GWP 化学余热回收(0.29%)+物理余热回收(0.05%)+预处理(49.09%)+制沸石(30.52%)+制类水滑石(20.06%) AP 化学余热回收(0.38%)+物理余热回收(0.06%)+预处理(64.41%)+制沸石(24.81%)+制类水滑石(10.34%) EP 化学余热回收(0.34%)+物理余热回收(0.06%)+预处理(58.20%)+制沸石(23.59%)+制类水滑石(17.81%) HTP 化学余热回收(0.38%)+物理余热回收(0.07%)+预处理(65.13%)+制沸石(20.33%)+制类水滑石(14.10%) POCP 化学余热回收(0.36%)+物理余热回收(0.06%)+预处理(61.28%)+制沸石(27.20%)+制类水滑石(11.10%) 表 4 关键输入对各环境指标的贡献
Table 4. Contributions of key inputs to each environmental indicator
环境指标 关键输入 GWP HCl (47.70%)+NaOH (27.23%)+NaAlO2 (16.43%)+
电力(8.64%)AP HCl (62.59%)+NaOH (9.23%)+NaAlO2 (16.85%)+
电力(11.33%)EP HCl (56.56%)+NaOH (22.38%)+NaAlO2 (10.82%)+
电力(10.24%)HTP HCl (63.29%)+NaOH (15.37%)+NaAlO2 (9.88%)+
电力(11.46%)POCP HCl (59.55%)+NaOH (10.87%)+NaAlO2 (18.80%)+
电力(10.78%)表 5 生命周期成本数据清单
Table 5. Inventory data of life cycle cost
成本类型 成本来源 数量 单价 总价/元 内部成本 HCl 1 752 kg 1元/kg 1 752 NaOH 680 kg 2元/kg 1 360 NaAlO2 80 kg 5元/kg 400 煤 40.41 kg 1.09元/kg 44.05 水 0.27 t 4.10元/t 1.11 电力 131.95 kW·h 0.38元/(kW·h) 50.14 外部成本 CO2排放 1.50 t 212.19元/t 318.29 表 6 系统效益分析
Table 6. Analysis of the system benefits
项目 指标/单位 CO2排
放/kg能源消
耗/MJ经济成
本/元单元 化学余热回收 4.22 15.85 46.89 物理余热回收 0.72 2.70 1.24 预处理 720.03 76.36 1912.84 制沸石 466.80 180.17 1 058.06 制类水滑石 309.61 200.19 906.82 额外优势 余热回收 0 −1 157.94 −234.96 产品吸附 −7 600.06 0 −1 612.66 总净值 −6 098.68 −682.68 2 078.24 -
[1] 王丽丽, 张玉柱, 龙跃, 等.气淬粒化高炉熔渣液膜流动特性数值模拟[J]. 过程工程学报,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307WANG L L, ZHANG Y Z, LONG Y, et al. Numerical investigation of film flow characteristics of molten slag in air quenching dry granulation process[J]. The Chinese Journal of Process Engineering,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307 [2] 张立生, 李慧, 张汉鑫, 等.高炉渣的综合利用及展望[J]. 热加工工艺,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005ZHANG L S, LI H, ZHANG H X, et al. Comprehensive utilization and prospect of blast furnace slag[J]. Hot Working Technology,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005 [3] LI Y, LIU Y, GONG X Z, et al. Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production[J]. Journal of Cleaner Production,2016,120:221-230. doi: 10.1016/j.jclepro.2015.12.071 [4] 康月, 刘超, 张玉柱.高炉渣作为气淬喷吹原料的可行性分析[J]. 中国冶金,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556KANG Y, LIU C, ZHANG Y Z. Feasibility analysis of blast furnace slag as gas quenching raw material[J]. China Metallurgy,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556 [5] 万新宇, 严定鎏, 高建军, 等.高炉渣干法轮式粒化半工业试验[J]. 中国冶金,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503WAN X Y, YAN D L, GAO J J, et al. Semi-industrial test on dry wheeled granulation for blast furnace slag[J]. China Metallurgy,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503 [6] MARUOKA N, MIZUOCHI T, PURWANTO H, et al. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator[J]. ISIJ International,2004,44(2):257-262. doi: 10.2355/isijinternational.44.257 [7] DUAN W J, YU Q B, WU T W, et al. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas[J]. Energy Conversion and Management,2016,117:513-519. doi: 10.1016/j.enconman.2016.03.051 [8] MA J, SHI Y, ZHANG H X, et al. Crystallization of CaO-MgO-Al2O3-SiO2 glass ceramic derived from blast furnace slag via one-step method[J]. Materials Chemistry and Physics,2021,261:124213. doi: 10.1016/j.matchemphys.2020.124213 [9] 蒲华俊, 曾淋林, 徐晓东, 等.无需热处理高炉渣微晶玻璃的制备与表征[J]. 人工晶体学报,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008PU H J, ZENG L L, XU X D, et al. Preparation and characterization of blast furnace slag glass ceramics without heat treatment[J]. Journal of Synthetic Crystals,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008 [10] ZHANG Y J, HE P Y, YANG M Y, et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment[J]. Catalysis Today,2020,355:325-332. doi: 10.1016/j.cattod.2019.02.003 [11] ZHANG Y B, LIU J C, SU Z J, et al. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs)[J]. Construction and Building Materials,2018,177:184-191. doi: 10.1016/j.conbuildmat.2018.05.110 [12] MONTANARI T, FINOCCHIO E, SALVATORE E, et al. CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents[J]. Energy,2011,36(1):314-319. doi: 10.1016/j.energy.2010.10.038 [13] BHATTA L K G, SUBRAMANYAM S, CHENGALA M D, et al. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review[J]. Journal of Cleaner Production,2015,103:171-196. doi: 10.1016/j.jclepro.2014.12.059 [14] 余红.可再生能源发电对PM10和PM2.5减排的贡献核算[J]. 环境工程技术学报,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052YU H. Emission reduction accounting for PM10 and PM2.5 by renewable energy power generation[J]. Journal of Environmental Engineering Technology,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052 [15] 陈伟强, 万红艳, 武娟妮, 等.铝的生命周期评价与铝工业的环境影响[J]. 轻金属,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015CHEN W Q, WAN H Y, WU J N, et al. Life cycle assessment of aluminium and the environmental impacts of aluminium industry[J]. Light Metals,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015 [16] 袁晓梅, 王斌.生命周期评价在硫铁矿掺烧亚铁渣制硫酸中的应用研究[J]. 绿色科技,2012(6):132-134. doi: 10.3969/j.issn.1674-9944.2012.06.066 [17] THANNIMALAY L, YUSOFF S, ZAWAWI N Z. Life cycle assessment of sodium hydroxide[J]. Australian Journal of Basic and Applied Sciences,2013,7(2):421-431. [18] 魏进超, 李俊杰, 康建刚.基于生命周期评价的烧结烟气净化技术比较[J]. 环境工程技术学报,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058WEI J C, LI J J, KANG J G. Comparison on different sintering flue gas purification technologies based on life cycle assessment[J]. Journal of Environmental Engineering Technology,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058 [19] 申宸昊, 邓义祥, 张嘉戌, 等.我国塑料污染生命周期管理分析与建议[J]. 环境科学研究,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14SHEN C H, DENG Y X, ZHANG J X, et al. Improve life cycle management of plastic pollution in China[J]. Research of Environmental Sciences,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14 [20] DUAN W J, YU Q B, WANG Z M, et al. Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system[J]. Energy,2018,142:486-495. doi: 10.1016/j.energy.2017.10.048 [21] 马铭婧, 郗凤明, 王娇月, 等.高炉渣CO2矿化利用技术的生命周期碳排放与成本评价[J]. 生态学杂志,2020,39(6):2097-2105.MA M J, XI F M, WANG J Y, et al. Life cycle carbon emissions and cost assessment of CO2 mineralization and utilization technology by means of blast furnace slag[J]. Chinese Journal of Ecology,2020,39(6):2097-2105. [22] LI J J, CHENG W J. Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol[J]. Applied Energy,2020,277:115574. doi: 10.1016/j.apenergy.2020.115574 [23] VAHIDI E, ZHAO F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction[J]. Journal of Environmental Management,2017,203:255-263. [24] 丁宁, 高峰, 王志宏, 等.原铝与再生铝生产的能耗和温室气体排放对比[J]. 中国有色金属学报,2012,22(10):2908-2915. doi: 10.19476/j.ysxb.1004.0609.2012.10.030DING N, GAO F, WANG Z H, et al. Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission[J]. The Chinese Journal of Nonferrous Metals,2012,22(10):2908-2915. ⊕ doi: 10.19476/j.ysxb.1004.0609.2012.10.030