留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高炉渣质能耦合处理系统的综合评价

李佩诗 段文军 吴沁停 宋慧聪

李佩诗,段文军,吴沁停,等.高炉渣质能耦合处理系统的综合评价[J].环境工程技术学报,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834
引用本文: 李佩诗,段文军,吴沁停,等.高炉渣质能耦合处理系统的综合评价[J].环境工程技术学报,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834
LI P S,DUAN W J,WU Q T,et al.Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag[J].Journal of Environmental Engineering Technology,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834
Citation: LI P S,DUAN W J,WU Q T,et al.Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag[J].Journal of Environmental Engineering Technology,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834

高炉渣质能耦合处理系统的综合评价

doi: 10.12153/j.issn.1674-991X.20210834
基金项目: 国家自然科学基金项目(51704071);中央高校基本科研业务专项(N2025006,N2124007-1,N2124001);国家级大学生创新创业训练计划项目(S202110145147)
详细信息
    作者简介:

    李佩诗(2001—),女,研究方向为固体废物高值化利用,20192607@stu.neu.edu.cn

    通讯作者:

    段文军(1988—),男,副教授,博士,研究方向为固体废物高值化利用,duanwenjun@mail.neu.edu.cn

  • 中图分类号: X57

Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag

  • 摘要:

    提出了一种新型的高炉渣质能耦合处理系统,实现了高炉渣余热的高效回收和渣中组分的高附加值利用。采用生命周期评价和生命周期成本方法,分别计算出系统的环境影响和经济成本,并对其资源能源消耗进行核算。通过主要贡献者的识别,追溯系统在环境影响、经济成本以及资源能源消耗方面的主要来源;通过综合表现评估以及敏感性分析,确定系统优化的关键单元。此外,基于系统特性分析了其在环境、能源以及经济方面的效益。结果表明:1)系统的环境影响主要是全球变暖(贡献率为47.68%),经济成本主要是内部成本(贡献率为91.89%),资源能源消耗主要是非能源资源(贡献率为98.57%);2)系统优化的关键单元是预处理,关键输入是HCl;3)充分考虑系统特性后,处理1 t高炉渣的CO2净排放量为−6 098.68 kg,净能耗为−682.68 MJ,经济成本为2 078.24元。

     

  • 图  1  高炉渣质能耦合处理系统工艺流程

    Figure  1.  Flowsheet of the mass-energy coupling treatment system for blast furnace slag

    图  2  高炉渣质能耦合处理系统生命周期边界

    Figure  2.  System boundary of the mass-energy coupling treatment system for blast furnace slag

    图  3  不同环境指标对总影响的贡献

    Figure  3.  Contribution of each environmental indicator to the total impact

    图  4  各单元资源消耗情况

    Figure  4.  Resource consumption of each unit

    图  5  不同资源对总资源消耗量的贡献

    Figure  5.  Contribution of different resources to the total resource consumption

    图  6  各单元能源消耗量对总能耗贡献

    Figure  6.  Contribution of each unit to the total energy consumption

    图  7  各单元对不同成本的贡献

    Figure  7.  Contribution of each unit to different costs

    图  8  各单元的综合表现比较

    Figure  8.  Comparison of the overall performance of each unit

    图  9  敏感性分析结果

    Figure  9.  Results of the sensitivity analysis

    表  1  系统清单数据[15-17]

    Table  1.   Inventory data of the system

    项目总量单元
    化学余热回收物理余热回收预处理制沸石制类水滑石
    能源消耗电力/(kW·h)131.954.400.7521.2050.0255.58
    资源消耗HCl/kg1 752001 75200
    NaOH/kg680000270410
    NaAlO2/kg80000800
    煤/kg40.4140.410000
    水/kg274.5177.94196.57000
    环境排放CO2/kg1 501.384.220.72720.03466.80309.61
    Cl2/kg3.33003.3300
    CH4/kg2.9620.010.0022.250.530.17
    NOx/kg3.8320.010.0022.250.900.67
    颗粒物/kg6.2750.030.0055.250.600.39
    SO2/kg4.3530.020.00331.100.23
    CO/kg0.080000.080
    N2/kg33.290033.2900
    N2O/kg0.020000.010.01
    SOx/kg0.050000.020.03
    烃类/kg0.080000.060.02
    下载: 导出CSV

    表  2  生命周期成本构成

    Table  2.   Components of life cycle cost

    成本类型次级成本类型成本来源
    内部成本材料成本HCl
    NaOH
    NaAlO2
    能源成本电力
    外部成本污染成本CO2排放
    下载: 导出CSV

    表  3  不同单元对各环境指标的贡献

    Table  3.   Contribution of each unit to each environmental indicator

    环境指标不同单元贡献
    GWP化学余热回收(0.29%)+物理余热回收(0.05%)+预处理(49.09%)+制沸石(30.52%)+制类水滑石(20.06%)
    AP化学余热回收(0.38%)+物理余热回收(0.06%)+预处理(64.41%)+制沸石(24.81%)+制类水滑石(10.34%)
    EP化学余热回收(0.34%)+物理余热回收(0.06%)+预处理(58.20%)+制沸石(23.59%)+制类水滑石(17.81%)
    HTP化学余热回收(0.38%)+物理余热回收(0.07%)+预处理(65.13%)+制沸石(20.33%)+制类水滑石(14.10%)
    POCP化学余热回收(0.36%)+物理余热回收(0.06%)+预处理(61.28%)+制沸石(27.20%)+制类水滑石(11.10%)
    下载: 导出CSV

    表  4  关键输入对各环境指标的贡献

    Table  4.   Contributions of key inputs to each environmental indicator

    环境指标关键输入
    GWPHCl (47.70%)+NaOH (27.23%)+NaAlO2 (16.43%)+
    电力(8.64%)
    APHCl (62.59%)+NaOH (9.23%)+NaAlO2 (16.85%)+
    电力(11.33%)
    EPHCl (56.56%)+NaOH (22.38%)+NaAlO2 (10.82%)+
    电力(10.24%)
    HTPHCl (63.29%)+NaOH (15.37%)+NaAlO2 (9.88%)+
    电力(11.46%)
    POCPHCl (59.55%)+NaOH (10.87%)+NaAlO2 (18.80%)+
    电力(10.78%)
    下载: 导出CSV

    表  5  生命周期成本数据清单

    Table  5.   Inventory data of life cycle cost

    成本类型成本来源数量单价总价/元
    内部成本HCl1 752 kg1元/kg1 752
    NaOH680 kg2元/kg1 360
    NaAlO280 kg5元/kg400
    40.41 kg1.09元/kg44.05
    0.27 t4.10元/t1.11
    电力131.95 kW·h0.38元/(kW·h)50.14
    外部成本CO2排放1.50 t212.19元/t318.29
    下载: 导出CSV

    表  6  系统效益分析

    Table  6.   Analysis of the system benefits

    项目 指标/单位
    CO2
    放/kg
    能源消
    耗/MJ
    经济成
    本/元
    单元 化学余热回收 4.22 15.85 46.89
    物理余热回收 0.72 2.70 1.24
    预处理 720.03 76.36 1912.84
    制沸石 466.80 180.17 1 058.06
    制类水滑石 309.61 200.19 906.82
    额外优势 余热回收 0 −1 157.94 −234.96
    产品吸附 −7 600.06 0 −1 612.66
    总净值 −6 098.68 −682.68 2 078.24
    下载: 导出CSV
  • [1] 王丽丽, 张玉柱, 龙跃, 等.气淬粒化高炉熔渣液膜流动特性数值模拟[J]. 过程工程学报,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307

    WANG L L, ZHANG Y Z, LONG Y, et al. Numerical investigation of film flow characteristics of molten slag in air quenching dry granulation process[J]. The Chinese Journal of Process Engineering,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307
    [2] 张立生, 李慧, 张汉鑫, 等.高炉渣的综合利用及展望[J]. 热加工工艺,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005

    ZHANG L S, LI H, ZHANG H X, et al. Comprehensive utilization and prospect of blast furnace slag[J]. Hot Working Technology,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005
    [3] LI Y, LIU Y, GONG X Z, et al. Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production[J]. Journal of Cleaner Production,2016,120:221-230. doi: 10.1016/j.jclepro.2015.12.071
    [4] 康月, 刘超, 张玉柱.高炉渣作为气淬喷吹原料的可行性分析[J]. 中国冶金,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556

    KANG Y, LIU C, ZHANG Y Z. Feasibility analysis of blast furnace slag as gas quenching raw material[J]. China Metallurgy,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556
    [5] 万新宇, 严定鎏, 高建军, 等.高炉渣干法轮式粒化半工业试验[J]. 中国冶金,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503

    WAN X Y, YAN D L, GAO J J, et al. Semi-industrial test on dry wheeled granulation for blast furnace slag[J]. China Metallurgy,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503
    [6] MARUOKA N, MIZUOCHI T, PURWANTO H, et al. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator[J]. ISIJ International,2004,44(2):257-262. doi: 10.2355/isijinternational.44.257
    [7] DUAN W J, YU Q B, WU T W, et al. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas[J]. Energy Conversion and Management,2016,117:513-519. doi: 10.1016/j.enconman.2016.03.051
    [8] MA J, SHI Y, ZHANG H X, et al. Crystallization of CaO-MgO-Al2O3-SiO2 glass ceramic derived from blast furnace slag via one-step method[J]. Materials Chemistry and Physics,2021,261:124213. doi: 10.1016/j.matchemphys.2020.124213
    [9] 蒲华俊, 曾淋林, 徐晓东, 等.无需热处理高炉渣微晶玻璃的制备与表征[J]. 人工晶体学报,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008

    PU H J, ZENG L L, XU X D, et al. Preparation and characterization of blast furnace slag glass ceramics without heat treatment[J]. Journal of Synthetic Crystals,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008
    [10] ZHANG Y J, HE P Y, YANG M Y, et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment[J]. Catalysis Today,2020,355:325-332. doi: 10.1016/j.cattod.2019.02.003
    [11] ZHANG Y B, LIU J C, SU Z J, et al. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs)[J]. Construction and Building Materials,2018,177:184-191. doi: 10.1016/j.conbuildmat.2018.05.110
    [12] MONTANARI T, FINOCCHIO E, SALVATORE E, et al. CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents[J]. Energy,2011,36(1):314-319. doi: 10.1016/j.energy.2010.10.038
    [13] BHATTA L K G, SUBRAMANYAM S, CHENGALA M D, et al. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review[J]. Journal of Cleaner Production,2015,103:171-196. doi: 10.1016/j.jclepro.2014.12.059
    [14] 余红.可再生能源发电对PM10和PM2.5减排的贡献核算[J]. 环境工程技术学报,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052

    YU H. Emission reduction accounting for PM10 and PM2.5 by renewable energy power generation[J]. Journal of Environmental Engineering Technology,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052
    [15] 陈伟强, 万红艳, 武娟妮, 等.铝的生命周期评价与铝工业的环境影响[J]. 轻金属,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015

    CHEN W Q, WAN H Y, WU J N, et al. Life cycle assessment of aluminium and the environmental impacts of aluminium industry[J]. Light Metals,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015
    [16] 袁晓梅, 王斌.生命周期评价在硫铁矿掺烧亚铁渣制硫酸中的应用研究[J]. 绿色科技,2012(6):132-134. doi: 10.3969/j.issn.1674-9944.2012.06.066
    [17] THANNIMALAY L, YUSOFF S, ZAWAWI N Z. Life cycle assessment of sodium hydroxide[J]. Australian Journal of Basic and Applied Sciences,2013,7(2):421-431.
    [18] 魏进超, 李俊杰, 康建刚.基于生命周期评价的烧结烟气净化技术比较[J]. 环境工程技术学报,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058

    WEI J C, LI J J, KANG J G. Comparison on different sintering flue gas purification technologies based on life cycle assessment[J]. Journal of Environmental Engineering Technology,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058
    [19] 申宸昊, 邓义祥, 张嘉戌, 等.我国塑料污染生命周期管理分析与建议[J]. 环境科学研究,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14

    SHEN C H, DENG Y X, ZHANG J X, et al. Improve life cycle management of plastic pollution in China[J]. Research of Environmental Sciences,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14
    [20] DUAN W J, YU Q B, WANG Z M, et al. Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system[J]. Energy,2018,142:486-495. doi: 10.1016/j.energy.2017.10.048
    [21] 马铭婧, 郗凤明, 王娇月, 等.高炉渣CO2矿化利用技术的生命周期碳排放与成本评价[J]. 生态学杂志,2020,39(6):2097-2105.

    MA M J, XI F M, WANG J Y, et al. Life cycle carbon emissions and cost assessment of CO2 mineralization and utilization technology by means of blast furnace slag[J]. Chinese Journal of Ecology,2020,39(6):2097-2105.
    [22] LI J J, CHENG W J. Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol[J]. Applied Energy,2020,277:115574. doi: 10.1016/j.apenergy.2020.115574
    [23] VAHIDI E, ZHAO F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction[J]. Journal of Environmental Management,2017,203:255-263.
    [24] 丁宁, 高峰, 王志宏, 等.原铝与再生铝生产的能耗和温室气体排放对比[J]. 中国有色金属学报,2012,22(10):2908-2915. doi: 10.19476/j.ysxb.1004.0609.2012.10.030

    DING N, GAO F, WANG Z H, et al. Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission[J]. The Chinese Journal of Nonferrous Metals,2012,22(10):2908-2915. ⊕ doi: 10.19476/j.ysxb.1004.0609.2012.10.030
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  275
  • HTML全文浏览量:  130
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16

目录

    /

    返回文章
    返回